
Computational Intelligence
Winter Term 2013/14

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
2

Plan for Today

● Single-Layer Perceptron

 Accelerated Learning

 Online- vs. Batch-Learning

● Multi-Layer-Perceptron

 Model

 Backpropagation

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
3

Acceleration of Perceptron Learning

Assumption: x 2 { 0, 1 }n) ||x|| ≥ 1 for all x ≠ (0, ..., 0)‘

If classification incorrect, then w‘x < 0.

Consequently, size of error is just δ = -w‘x > 0.

) wt+1 = wt + (δ + ε) x for ε > 0 (small) corrects error in a single step, since

≥ 0 > 0

w‘t+1x = (wt + (δ + ε) x)‘ x

 = w‘t x + (δ + ε) x‘x

 = -δ + δ ||x||2 + ε ||x||2

 = δ (||x||2 – 1) + ε ||x||2 > 0

Single-Layer Perceptron (SLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
4

Generalization:

Assumption: x 2 Rn) ||x|| > 0 for all x ≠ (0, ..., 0)‘

as before: wt+1 = wt + (δ + ε) x for ε > 0 (small) and δ = - w‘t x > 0

< 0 possible! > 0

w‘t+1x = δ (||x||2 – 1) + ε ||x||2)

Idea: Scaling of data does not alter classification task!

Let = min { || x || : x 2 B } > 0

Set x = ^ x) set of scaled examples B ^

) || x || ≥ 1) || x ||2 – 1 ≥ 0) w’t+1 x > 0 ^ ^ ^

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
5

There exist numerous variants of Perceptron Learning Methods.

Theorem: (Duda & Hart 1973)

If rule for correcting weights is wt+1 = wt + γt x (if w‘t x < 0)

1. 8 t ≥ 0 : γt ≥ 0

2.

3.

then wt → w* for t → 1 with 8 x‘w* > 0. ■

e.g.: γt = γ > 0 or γt = γ / (t+1) for γ > 0

Single-Layer Perceptron (SLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
6

as yet: Online Learning

→ Update of weights after each training pattern (if necessary)

now: Batch Learning

→ Update of weights only after test of all training patterns

wt+1 = wt + γ x Σ
w‘t x < 0

x 2 B

→ Update rule:

(γ > 0)

vague assessment in literature:

• advantage : „usually faster“

• disadvantage : „needs more memory“ just a single vector!

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
7

find weights by means of optimization

Let F(w) = { x 2 B : w‘x < 0 } be the set of patterns incorrectly classified by weight w.

Objective function: Σ f(w) = – w‘x → min!
x 2 F(w)

Optimum: f(w) = 0 iff F(w) is empty

Possible approach: gradient method

wt+1 = wt – γ rf(wt) (γ > 0)
converges to a local
minimum (dep. on w0)

Single-Layer Perceptron (SLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
8

Gradient method

wt+1 = wt – γrf(wt)

Gradient

Gradient points in direction of
steepest ascent of function f(¢)

Caution:
Indices i of wi
here denote
components of
vector w; they are
not the iteration
counters!

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
9

Gradient method

gradient

thus:

gradient method ⇔ batch learning

Single-Layer Perceptron (SLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
10

How difficult is it

(a) to find a separating hyperplane, provided it exists?

(b) to decide, that there is no separating hyperplane?

Let B = P [{ -x : x 2 N } (only positive examples), wi 2 R, θ 2 R , |B| = m

For every example xi 2 B should hold:

xi1 w1 + xi2 w2 + ... + xin wn ≥ θ → trivial solution wi = θ = 0 to be excluded!

Therefore additionally: η 2 R
xi1 w1 + xi2 w2 + ... + xin wn – θ – η ≥ 0

Idea: η maximize → if η* > 0, then solution found

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
11

Matrix notation:

Linear Programming Problem:

f(z1, z2, ..., zn, zn+1, zn+2) = zn+2 → max!

s.t. Az ≥ 0

calculated by e.g. Kamarkar-
algorithm in polynomial time

If zn+2 = η > 0, then weights and threshold are given by z.

Otherwise separating hyperplane does not exist!

Single-Layer Perceptron (SLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
12

What can be achieved by adding a layer?

● Single-layer perceptron (SLP)

) Hyperplane separates space in two subspaces

● Two-layer perceptron

) arbitrary convex sets can be separated

● Three-layer perceptron

) arbitrary sets can be separated (depends on number of neurons)-

P

N

connected by
AND gate in

2nd layer

several convex sets representable by 2nd layer,

these sets can be combined in 3rd layer

) more than 3 layers not necessary!

Multi-Layer Perceptron (MLP)

convex sets
of 2nd layer

connected by
OR gate in
3rd layer

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
13

XOR with 3 neurons in 2 steps

x1 x2 y1 y2 z

0 0 0 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

≥ 2

x1

x2

-1 1

-1

y1

z

1 y2

1

 1

convex set

Multi-Layer Perceptron (MLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
14

XOR with 3 neurons in 2 layers

x1 x2 y1 y2 z

0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 0 0 0

≥ 1

≥ 1

x1

x2

-1 1

1

y1

z

≥ 1 1 y2

1

-1

without AND gate in 2nd layer

Multi-Layer Perceptron (MLP)

x1 – x2 ≥ 1
x2 – x1 ≥ 1

x2 ≤ x1 – 1
x2 ≥ x1 + 1

,
1

1

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
15

XOR can be realized with only 2 neurons!

≥ 2 ≥ 1

x1

x2

1

1

-2
1

1

y z

x1 x2 y -2y x1-2y+x2 z

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 0 1 1

1 1 1 -2 0 0

BUT: this is not a layered network (no MLP) !

Multi-Layer Perceptron (MLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
16

Multi-Layer Perceptron (MLP)

Evidently:

MLPs deployable for addressing significantly more difficult problems than SLPs!

But:

How can we adjust all these weights and thresholds?

Is there an efficient learning algorithm for MLPs?

History:

Unavailability of efficient learning algorithm for MLPs was a brake shoe ...

... until Rumelhart, Hinton and Williams (1986): Backpropagation

Actually proposed by Werbos (1974)

... but unknown to ANN researchers (was PhD thesis)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
17

Quantification of classification error of MLP

● Total Sum Squared Error (TSSE)

output of net
for weights w and input x

target output of net
for input x

● Total Mean Squared Error (TMSE)

TSSE

 # training patters # output neurons
const.

leads to same
solution as TSSE

Multi-Layer Perceptron (MLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
18

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

...

...

...

1

...
2

m

1

2

x1

x2

xn

w11

wnm

u11

f(wt, ut) = TSSE → min!

Gradient method

ut+1 = ut - γru f(wt, ut)

wt+1 = wt - γrw f(wt, ut)

Multi-Layer Perceptron (MLP)

idea: minimize error!

BUT:

f(w, u) cannot be differentiated!

Why? → Discontinuous activation function a(.) in neuron!
θ

0
1

idea: find smooth activation function similar to original function !

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
19

good idea: sigmoid activation function (instead of signum function)
θ

0
1

0

1

• monotone increasing

• differentiable

• non-linear

• output 2 [0,1] instead of 2 { 0, 1 }

• threshold θ integrated in
 activation function e.g.:

●

●

values of derivatives directly
determinable from function
values

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
20

Gradient method

...

...

...

1

...

2

J

1

2

x1

x2

xI

w11

wnm

u11

f(wt, ut) = TSSE

ut+1 = ut - γru f(wt, ut)

wt+1 = wt - γrw f(wt, ut)

K

z1

z2

zK

y1

y2

yJ
yj : values after first layer

zk: values after second layer

xi : inputs

yj = h(¢)

zk = a(¢)

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
21

output of neuron j
after 1st layer

output of neuron k
after 2nd layer

error of input x:

target output for input x output of net

Multi-Layer Perceptron (MLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
22

error for input x and target output z*:

total error for all training patterns (x, z*) 2 B:

(TSSE)

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
23

gradient of total error:

thus:

and

vector of partial derivatives w.r.t.
weights ujk and wij

Multi-Layer Perceptron (MLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
24

assume:)

and:

chain rule of differential calculus:

outer
derivative

inner
derivative

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
25

partial derivative w.r.t. ujk:

“error signal“ δk

Multi-Layer Perceptron (MLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
26

partial derivative w.r.t. wij:

error signal δk from previous layer

factors
reordered

error signal δj from “current“ layer

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
27

Generalization (> 2 layers)

Let neural network have L layers S1, S2, ... SL.

Let neurons of all layers be numbered from 1 to N.

All weights wij are gathered in weights matrix W.

Let oj be output of neuron j.

j 2 Sm →
neuron j is in
m-th layer

error signal:

correction:
in case of online learning:
correction after each test pattern presented

Multi-Layer Perceptron (MLP) Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
28

error signal of neuron in inner layer determined by

● error signals of all neurons of subsequent layer and

● weights of associated connections.

)

● First determine error signals of output neurons,

● use these error signals to calculate the error signals of the preceding layer,

● use these error signals to calculate the error signals of the preceding layer,

● and so forth until reaching the first inner layer.

)

thus, error is propagated backwards from output layer to first inner
) backpropagation (of error)

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14
29

) other optimization algorithms deployable!
in addition to backpropagation (gradient descent) also:

● Backpropagation with Momentum
 take into account also previous change of weights:

● QuickProp
 assumption: error function can be approximated locally by quadratic function,
 update rule uses last two weights at step t – 1 and t – 2.

● Resilient Propagation (RPROP)
 exploits sign of partial derivatives:
 2 times negative or positive) increase step!
 change of sign) reset last step and decrease step!
 typical values: factor for decreasing 0,5 / factor of increasing 1,2

● evolutionary algorithms
 individual = weights matrix

Multi-Layer Perceptron (MLP)

later more
about this!

