
Computational Intelligence
Winter Term 2014/15

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
2

Plan for Today

● Single-Layer Perceptron

 Accelerated Learning

 Online- vs. Batch-Learning

● Multi-Layer-Perceptron

 Model

 Backpropagation

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
3

Acceleration of Perceptron Learning

Assumption: x 2 { 0, 1 }n) ||x|| ≥ 1 for all x ≠ (0, ..., 0)‘

If classification incorrect, then w‘x < 0.

Consequently, size of error is just δ = -w‘x > 0.

) wt+1 = wt + (δ + ε) x for ε > 0 (small) corrects error in a single step, since

≥ 0 > 0

w‘t+1x = (wt + (δ + ε) x)‘ x

 = w‘t x + (δ + ε) x‘x

 = -δ + δ ||x||2 + ε ||x||2

 = δ (||x||2 – 1) + ε ||x||2 > 0 

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
4

Generalization:

Assumption: x 2 Rn) ||x|| > 0 for all x ≠ (0, ..., 0)‘

as before: wt+1 = wt + (δ + ε) x for ε > 0 (small) and δ = - w‘t x > 0

< 0 possible! > 0

w‘t+1x = δ (||x||2 – 1) + ε ||x||2)

Idea: Scaling of data does not alter classification task!

Let = min { || x || : x 2 B } > 0

Set x = ^ x) set of scaled examples B ^

) || x || ≥ 1) || x ||2 – 1 ≥ 0) w’t+1 x > 0  ^ ^ ^

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
5

There exist numerous variants of Perceptron Learning Methods.

Theorem: (Duda & Hart 1973)

If rule for correcting weights is wt+1 = wt + γt x (if w‘t x < 0)

1. 8 t ≥ 0 : γt ≥ 0

2.

3.

then wt → w* for t → 1 with 8 x‘w* > 0. ■

e.g.: γt = γ > 0 or γt = γ / (t+1) for γ > 0

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
6

as yet: Online Learning

→ Update of weights after each training pattern (if necessary)

now: Batch Learning

→ Update of weights only after test of all training patterns

wt+1 = wt + γ x Σ
w‘t x < 0

x 2 B

→ Update rule:

(γ > 0)

vague assessment in literature:

• advantage : „usually faster“

• disadvantage : „needs more memory“ just a single vector!

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
7

find weights by means of optimization

Let F(w) = { x 2 B : w‘x < 0 } be the set of patterns incorrectly classified by weight w.

Objective function: Σ f(w) = – w‘x → min!
x 2 F(w)

Optimum: f(w) = 0 iff F(w) is empty

Possible approach: gradient method

wt+1 = wt – γ rf(wt) (γ > 0)
converges to a local
minimum (dep. on w0)

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
8

Gradient method

wt+1 = wt – γrf(wt)

Gradient

Gradient points in direction of
steepest ascent of function f(¢)

Caution:
Indices i of wi
here denote
components of
vector w; they are
not the iteration
counters!

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
9

Gradient method

gradient

thus:

gradient method ⇔ batch learning

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
10

How difficult is it

(a) to find a separating hyperplane, provided it exists?

(b) to decide, that there is no separating hyperplane?

Let B = P [{ -x : x 2 N } (only positive examples), wi 2 R, θ 2 R , |B| = m

For every example xi 2 B should hold:

xi1 w1 + xi2 w2 + ... + xin wn ≥ θ → trivial solution wi = θ = 0 to be excluded!

Therefore additionally: η 2 R
xi1 w1 + xi2 w2 + ... + xin wn – θ – η ≥ 0

Idea: η maximize → if η* > 0, then solution found

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
11

Matrix notation:

Linear Programming Problem:

f(z1, z2, ..., zn, zn+1, zn+2) = zn+2 → max!

s.t. Az ≥ 0

calculated by e.g. Kamarkar-
algorithm in polynomial time

If zn+2 = η > 0, then weights and threshold are given by z.

Otherwise separating hyperplane does not exist!

Single-Layer Perceptron (SLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
12

What can be achieved by adding a layer?

● Single-layer perceptron (SLP)

) Hyperplane separates space in two subspaces

● Two-layer perceptron

) arbitrary convex sets can be separated

● Three-layer perceptron

) arbitrary sets can be separated (depends on number of neurons)-

P

N

connected by
AND gate in

2nd layer

several convex sets representable by 2nd layer,

these sets can be combined in 3rd layer

) more than 3 layers not necessary!

Multi-Layer Perceptron (MLP)

convex sets
of 2nd layer

connected by
OR gate in
3rd layer

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
13

XOR with 3 neurons in 2 steps

x1 x2 y1 y2 z

0 0 0 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

≥ 2

x1

x2

-1 1

-1

y1

z

1 y2

1

 1

convex set

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
14

XOR with 3 neurons in 2 layers

x1 x2 y1 y2 z

0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 0 0 0

≥ 1

≥ 1

x1

x2

-1 1

1

y1

z

≥ 1 1 y2

1

-1

without AND gate in 2nd layer

Multi-Layer Perceptron (MLP)

x1 – x2 ≥ 1
x2 – x1 ≥ 1

x2 ≤ x1 – 1
x2 ≥ x1 + 1

,
1

1

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
15

XOR can be realized with only 2 neurons!

≥ 2 ≥ 1

x1

x2

1

1

-2
1

1

y z

x1 x2 y -2y x1-2y+x2 z

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 0 1 1

1 1 1 -2 0 0

BUT: this is not a layered network (no MLP) !

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
16

Multi-Layer Perceptron (MLP)

Evidently:

MLPs deployable for addressing significantly more difficult problems than SLPs!

But:

How can we adjust all these weights and thresholds?

Is there an efficient learning algorithm for MLPs?

History:

Unavailability of efficient learning algorithm for MLPs was a brake shoe ...

... until Rumelhart, Hinton and Williams (1986): Backpropagation

Actually proposed by Werbos (1974)

... but unknown to ANN researchers (was PhD thesis)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
17

Quantification of classification error of MLP

● Total Sum Squared Error (TSSE)

output of net
for weights w and input x

target output of net
for input x

● Total Mean Squared Error (TMSE)

TSSE

 # training patters # output neurons
const.

leads to same
solution as TSSE

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
18

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

...

...

...

1
...

2

m

1

2

x1

x2

xn

w11

wnm

u11

f(wt, ut) = TSSE → min!

Gradient method

ut+1 = ut - γru f(wt, ut)

wt+1 = wt - γrw f(wt, ut)

Multi-Layer Perceptron (MLP)

idea: minimize error!

BUT:

f(w, u) cannot be differentiated!

Why? → Discontinuous activation function a(.) in neuron!
θ

0
1

idea: find smooth activation function similar to original function !

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
19

good idea: sigmoid activation function (instead of signum function)
θ

0
1

0

1

• monotone increasing

• differentiable

• non-linear

• output 2 [0,1] instead of 2 { 0, 1 }

• threshold θ integrated in
 activation function e.g.:

●

●

values of derivatives directly
determinable from function
values

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
20

Gradient method

...

...

...

1
...

2

J

1

2

x1

x2

xI

w11

wnm

u11

f(wt, ut) = TSSE

ut+1 = ut - γru f(wt, ut)

wt+1 = wt - γrw f(wt, ut)

K

z1

z2

zK

y1

y2

yJ
yj : values after first layer

zk: values after second layer

xi : inputs

yj = h(¢)

zk = a(¢)

Multi-Layer Perceptron (MLP)

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
21

output of neuron j
after 1st layer

output of neuron k
after 2nd layer

error of input x:

target output for input x output of net

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
22

error for input x and target output z*:

total error for all training patterns (x, z*) 2 B:

(TSSE)

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
23

gradient of total error:

thus:

and

vector of partial derivatives w.r.t.
weights ujk and wij

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
24

assume:)

and:

chain rule of differential calculus:

outer
derivative

inner
derivative

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
25

partial derivative w.r.t. ujk:

“error signal“ δk

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
26

partial derivative w.r.t. wij:

error signal δk from previous layer

factors
reordered

error signal δj from “current“ layer

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
27

Generalization (> 2 layers)

Let neural network have L layers S1, S2, ... SL.

Let neurons of all layers be numbered from 1 to N.

All weights wij are gathered in weights matrix W.

Let oj be output of neuron j.

j 2 Sm →
neuron j is in
m-th layer

error signal:

correction:
in case of online learning:
correction after each test pattern presented

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
28

error signal of neuron in inner layer determined by

● error signals of all neurons of subsequent layer and

● weights of associated connections.

)

● First determine error signals of output neurons,

● use these error signals to calculate the error signals of the preceding layer,

● use these error signals to calculate the error signals of the preceding layer,

● and so forth until reaching the first inner layer.

)

thus, error is propagated backwards from output layer to first inner
) backpropagation (of error)

Multi-Layer Perceptron (MLP)

Lecture 02

G. Rudolph: Computational Intelligence ▪ Winter Term 2014/15
29

) other optimization algorithms deployable!
in addition to backpropagation (gradient descent) also:

● Backpropagation with Momentum
 take into account also previous change of weights:

● QuickProp
 assumption: error function can be approximated locally by quadratic function,
 update rule uses last two weights at step t – 1 and t – 2.

● Resilient Propagation (RPROP)
 exploits sign of partial derivatives:
 2 times negative or positive) increase step!
 change of sign) reset last step and decrease step!
 typical values: factor for decreasing 0,5 / factor of increasing 1,2

● evolutionary algorithms
 individual = weights matrix

Multi-Layer Perceptron (MLP)

later more
about this!

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29

