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Plan for Today 

●  Single-Layer Perceptron 

 Accelerated Learning 

 Online- vs. Batch-Learning 
 

●  Multi-Layer-Perceptron 

 Model 

 Backpropagation 
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Acceleration of Perceptron Learning 

Assumption:   x 2 { 0, 1 }n ) ||x|| ≥ 1 for all x ≠ (0, ..., 0)‘ 

If classification incorrect, then w‘x < 0. 

Consequently, size of error is just  δ = -w‘x > 0. 

) wt+1 = wt + (δ + ε) x    for ε > 0 (small) corrects error in a single step, since 

≥ 0 > 0 

w‘t+1x = (wt + (δ + ε) x)‘ x 

 = w‘t x + (δ + ε) x‘x 

 =   -δ + δ ||x||2 + ε ||x||2 

 = δ (||x||2 – 1) + ε ||x||2 > 0         

Single-Layer Perceptron (SLP) 
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Generalization:   

Assumption:   x 2 Rn ) ||x|| > 0  for all x ≠ (0, ..., 0)‘ 

as before:   wt+1 = wt + (δ + ε) x    for ε > 0 (small) and δ = - w‘t x > 0 

< 0 possible! > 0 

w‘t+1x = δ (||x||2 – 1) + ε ||x||2 ) 

Idea:  Scaling of data does not alter classification task!  

Let  =  min { || x || : x 2 B } > 0 

Set      x = ^ x ) set of scaled examples  B ^ 

) || x || ≥ 1 )   || x ||2 – 1 ≥ 0     )    w’t+1 x  > 0    ^ ^ ^ 

Single-Layer Perceptron (SLP) 
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There exist numerous variants of Perceptron Learning Methods. 

Theorem:  (Duda & Hart 1973) 

If rule for correcting weights is wt+1 = wt + γt x       (if w‘t x < 0) 

1.  8 t ≥ 0 : γt ≥ 0 
 

2.   
 
 
 

3.  
 
  

then wt → w* for t → 1 with 8 x‘w* > 0.   ■ 

e.g.: γt = γ > 0    or    γt = γ / (t+1)  for γ > 0 

Single-Layer Perceptron (SLP) 
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as yet: Online Learning 

→ Update of weights after each training pattern (if necessary) 

now:  Batch Learning 

→ Update of weights only after test of all training patterns 

wt+1 = wt + γ      x Σ 
w‘t x < 0 

x 2 B 

→ Update rule: 

(γ > 0) 

vague assessment in literature: 

• advantage : „usually faster“ 

• disadvantage : „needs more memory“ just a single vector! 

Single-Layer Perceptron (SLP) 
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find weights by means of optimization  

Let F(w) = { x 2 B :  w‘x < 0 } be the set of patterns incorrectly classified by weight w. 

Objective function: Σ f(w) = –      w‘x   → min!  
x 2 F(w) 

Optimum:  f(w) = 0       iff F(w) is empty 

Possible approach: gradient method 

wt+1 = wt  – γ rf(wt) (γ > 0)  
converges to a local 
minimum (dep. on w0) 

Single-Layer Perceptron (SLP) 
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Gradient method 

wt+1 = wt  – γrf(wt) 

Gradient 

Gradient points in direction of 
steepest ascent of function f(¢) 

Caution: 
Indices i of wi  
here denote 
components of 
vector w; they are 
not the iteration 
counters! 

Single-Layer Perceptron (SLP) 
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Gradient method 

gradient 

thus: 

gradient method ⇔ batch learning 

Single-Layer Perceptron (SLP) 
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How difficult is it  

(a) to find a separating hyperplane, provided it exists? 

(b) to decide, that there is no separating hyperplane? 

Let B = P [ { -x : x 2 N }    (only positive examples), wi 2 R,  θ 2 R , |B| = m 

For every example xi 2 B should hold: 

xi1 w1 + xi2 w2 + ... + xin wn ≥ θ → trivial solution wi = θ = 0 to be excluded! 

Therefore additionally:  η 2 R 
xi1 w1 + xi2 w2 + ... + xin wn – θ – η  ≥ 0 

Idea: η maximize → if η* > 0, then solution found 

Single-Layer Perceptron (SLP) 
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Matrix notation: 

Linear Programming Problem: 

f(z1, z2, ..., zn, zn+1, zn+2) = zn+2     →  max! 

s.t.    Az ≥ 0 

calculated by e.g. Kamarkar-
algorithm in polynomial time 

If zn+2 = η > 0, then weights and threshold are given by z. 

Otherwise separating hyperplane does not exist!  

Single-Layer Perceptron (SLP) 
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What can be achieved by adding a layer? 

● Single-layer perceptron (SLP) 
 

   ) Hyperplane separates space in two subspaces 
 

● Two-layer perceptron 
 

   ) arbitrary convex sets can be separated 
 

● Three-layer perceptron 
 

   ) arbitrary sets can be separated (depends on number of neurons)-  

P 

N 

connected by 
AND gate in 

2nd layer 

several convex sets representable by 2nd layer, 

these sets can be combined in 3rd layer 

) more than 3 layers not necessary! 

Multi-Layer Perceptron (MLP) 

convex sets 
of 2nd layer 

connected by 
OR gate in 
3rd layer 
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XOR with 3 neurons in 2 steps 

x1 x2 y1 y2 z 

0 0 0 1 0 

0 1 1 1 1 

1 0 1 1 1 

1 1 1 0 0 

≥ 2 

x1 

x2 

-1 1 

-1 

y1 

z 

1 y2 

1 

 1 

convex set 

Multi-Layer Perceptron (MLP) 
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XOR with 3 neurons in 2 layers 

x1 x2 y1 y2 z 

0 0 0 0 0 

0 1 0 1 1 

1 0 1 0 1 

1 1 0 0 0 

≥ 1 

≥ 1 

x1 

x2 

-1 1 

1 

y1 

z 

≥ 1 1 y2 

1 

-1 

without AND gate in 2nd layer 

Multi-Layer Perceptron (MLP) 

x1 – x2 ≥  1 
x2 – x1 ≥  1  

x2 ≤  x1 – 1 
x2 ≥  x1 + 1  

, 
1 

1 
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XOR can be realized with only 2 neurons! 

≥ 2 ≥ 1 

x1 

x2 

1 

1 

-2 
1 

1 

y z 

x1 x2 y -2y x1-2y+x2 z 

0 0 0 0 0 0 

0 1 0 0 1 1 

1 0 0 0 1 1 

1 1 1 -2 0 0 

BUT: this is not a layered network (no MLP) ! 

Multi-Layer Perceptron (MLP) 
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Multi-Layer Perceptron (MLP) 

Evidently: 

MLPs deployable for addressing significantly more difficult problems than SLPs! 

But: 

How can we adjust all these weights and thresholds? 

Is there an efficient learning algorithm for MLPs? 

History: 

Unavailability of efficient learning algorithm for MLPs was a brake shoe ... 

... until Rumelhart, Hinton and Williams (1986): Backpropagation 

Actually proposed by Werbos (1974)  

... but unknown to ANN researchers (was PhD thesis) 
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Quantification of classification error of MLP 

● Total Sum Squared Error (TSSE) 

output of net  
for weights w and input x 

target output of net  
for input x 

● Total Mean Squared Error (TMSE) 

TSSE 

     # training patters # output neurons 
const. 

leads to same 
solution as TSSE 

Multi-Layer Perceptron (MLP) 
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Learning algorithms for Multi-Layer-Perceptron (here: 2 layers) 

... 

... 

... 

1 
... 

2 

m 

1 

2 

x1 

x2 

xn 

w11 

wnm 

u11 

f(wt, ut) = TSSE   →   min! 

Gradient method 

ut+1 = ut - γru f(wt, ut) 

wt+1 = wt - γrw f(wt, ut) 

Multi-Layer Perceptron (MLP) 

idea: minimize error! 

BUT: 

f(w, u) cannot be differentiated! 

Why?  → Discontinuous activation function a(.) in neuron! 
θ 

0 
1 

idea: find smooth activation function similar to original function ! 
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good idea:  sigmoid activation function (instead of signum function) 
θ 

0 
1 

0 

1 

• monotone increasing 

• differentiable 

• non-linear 

• output 2 [0,1] instead of 2 { 0, 1 } 

• threshold θ integrated in 
  activation function e.g.: 

● 

● 

values of derivatives directly 
determinable from function 
values 

Multi-Layer Perceptron (MLP) 

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers) 
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Gradient method 

... 

... 

... 

1 
... 

2 

J 

1 

2 

x1 

x2 

xI 

w11 

wnm 

u11 

f(wt, ut) = TSSE 

ut+1 = ut - γru f(wt, ut) 

wt+1 = wt - γrw f(wt, ut) 

K 

z1 

z2 

zK 

y1 

y2 

yJ 
yj : values after first layer 

zk: values after second layer 

xi : inputs 

yj = h(¢) 

zk = a(¢) 

Multi-Layer Perceptron (MLP) 

Learning algorithms for Multi-Layer-Perceptron (here: 2 layers) 
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output of neuron j  
after 1st layer 

output of neuron k  
after 2nd layer 

error of input x: 

target output for input x output of net 

Multi-Layer Perceptron (MLP) 
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error for input x and target output z*: 

total error for all training patterns (x, z*) 2 B: 

(TSSE) 

Multi-Layer Perceptron (MLP) 
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gradient of total error: 

thus: 

and 

vector of partial derivatives w.r.t. 
weights ujk and wij 

Multi-Layer Perceptron (MLP) 
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assume:   ) 

and: 

chain rule of differential calculus: 

outer 
derivative 

inner 
derivative 

Multi-Layer Perceptron (MLP) 
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partial derivative w.r.t. ujk: 

“error signal“  δk 

Multi-Layer Perceptron (MLP) 
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partial derivative w.r.t. wij: 

error signal δk from previous layer 

factors 
reordered 

error signal δj from “current“ layer 

Multi-Layer Perceptron (MLP) 
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Generalization (> 2 layers) 

Let neural network have L layers S1, S2, ... SL. 

Let neurons of all layers be numbered from 1 to N. 

All weights wij are gathered in weights matrix W. 

Let oj be output of neuron j. 

j 2 Sm → 
neuron j is in 
m-th layer 

error signal: 

correction: 
in case of online learning:  
correction after each test pattern presented 

Multi-Layer Perceptron (MLP) 
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error signal of neuron in inner layer determined by 

● error signals of all neurons of subsequent layer and 

● weights of associated connections. 

)
 

● First determine error signals of output neurons, 

● use these error signals to calculate the error signals of the preceding layer, 

● use these error signals to calculate the error signals of the preceding layer,  

● and so forth until reaching the first inner layer. 

)
 

thus, error is propagated backwards from output layer to first inner 
) backpropagation (of error) 

Multi-Layer Perceptron (MLP) 
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) other optimization algorithms deployable! 
in addition to backpropagation (gradient descent) also: 

● Backpropagation with Momentum 
   take into account also previous change of weights: 
 
 

● QuickProp 
   assumption: error function can be approximated locally by quadratic function, 
   update rule uses last two weights at step t – 1 and t – 2. 

● Resilient Propagation (RPROP) 
   exploits sign of partial derivatives: 
   2 times negative or positive ) increase step!  
   change of sign ) reset last step and decrease step! 
   typical values: factor for decreasing 0,5 / factor of increasing 1,2  

● evolutionary algorithms 
   individual = weights matrix 

Multi-Layer Perceptron (MLP) 

later more 
about this! 
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