

Computational Intelligence

Winter Term 2013/14

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Plan for Today

Lecture 03

- Application Fields of ANNs
 - Classification
 - Prediction
 - Function Approximation
- Radial Basis Function Nets (RBF Nets)
 - Model
 - Training
- Recurrent MLP
 - Elman Nets
 - Jordan Nets

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2013/14

2

Application Fields of ANNs

Lecture 03

Classification

 $\underbrace{\mathsf{given}}_{} : \mathsf{set} \mathsf{ of training patterns (input / output)} \\ \uparrow \qquad \uparrow$

output) output = label
(e.g. class A, class B, ...)

parameters $f(x; (\widetilde{x}_1, \widetilde{y}_1), \dots, (\widetilde{x}_m, \widetilde{y}_m), w_1, \dots, w_n) \to \widehat{y}$ $\downarrow \text{input training patterns weights output (unknown) (known) (learnt) (guessed)}$

phase I:

train network

phase II:

apply network to unkown inputs for classification

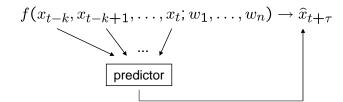
Application Fields of ANNs

Lecture 03

Prediction of Time Series

time series x_1, x_2, x_3, \dots (e.g. temperatures, exchange rates, ...)

task: given a subset of historical data, predict the future



training patterns:

historical data where true output is known;

error per pattern = $(\hat{x}_{t+\tau} - x_{t+\tau})^2$

phase II: apply net

phase I:

train network

apply network to historical inputs for predicting <u>unkown</u> outputs

Application Fields of ANNs

Lecture 03

Prediction of Time Series: Example for Creating Training Data

given: time series 10.5, 3.4, 5.6, 2.4, 5.9, 8.4, 3.9, 4.4, 1.7 time window: k=3 first input / output pair (10.5, 3.4, 5.6) 2.4 known known input output

further input / output pairs: (3.4, 5.6, 2.4) 8.4 (5.6, 2.4, 5.9)(2.4, 5.9, 8.4)3.9 (5.9, 8.4, 3.9)(8.4, 3.9, 4.4)1.7

G. Rudolph: Computational Intelligence • Winter Term 2013/14

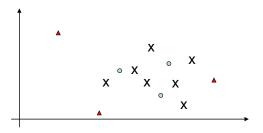
Application Fields of ANNs

Lecture 03

Function Approximation (the general case)

task: given training patterns (input / output), approximate unkown function

- → should give outputs close to true unknwn function for arbitrary inputs
- values between training patterns are interpolated
- values outside convex hull of training patterns are extrapolated



- x: input training pattern
- : input pattern where output to be interpolated
- ▲: input pattern where output to be extrapolated

G. Rudolph: Computational Intelligence • Winter Term 2013/14

Recurrent MLPs

Lecture 03

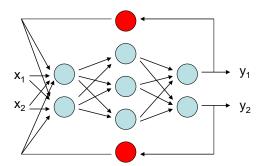
Jordan nets (1986)

technische universität

dortmund

context neuron:

reads output from some neuron at step t and feeds value into net at step t+1



Jordan net =

MLP + context neuron for each output, context neurons fully connected to input layer

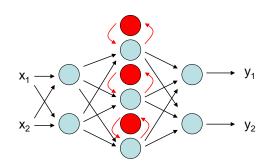
Recurrent MLPs

Lecture 03

Elman nets (1990)

Elman net =

MLP + context neuron for each hidden layer neuron's output of MLP, context neurons fully connected to emitting MLP layer



dortmund

Recurrent MLPs

Lecture 03

Training?

- ⇒ unfolding in time ("loop unrolling")
- identical MLPs serially connected (finitely often)
- results in a large MLP with many hidden (inner) layers
- · backpropagation may take a long time
- but reasonable if most recent past more important than layers far away

Why using backpropagation?

⇒ use Evolutionary Algorithms directly on recurrent MLP!

G. Rudolph: Computational Intelligence • Winter Term 2013/14

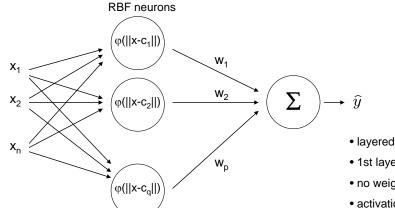
Radial Basis Function Nets (RBF Nets)

Lecture 03

Definition:

A function $f: \mathbb{R}^n \to \mathbb{R}$ is termed radial basis function net (RBF net)

iff
$$f(x) = w_1 \varphi(||x - c_1||) + w_2 \varphi(||x - c_2||) + ... + w_p \varphi(||x - c_q||)$$



· layered net

G. Rudolph: Computational Intelligence • Winter Term 2013/14

- 1st layer fully connected
- no weights in 1st layer
- · activation functions differ

Radial Basis Function Nets (RBF Nets)

Lecture 03

Definition:

A function $\phi: \mathbb{R}^n \to \mathbb{R}$ is termed radial basis function

iff
$$\exists \ \phi : \mathbb{R} \to \mathbb{R} : \forall \ x \in \mathbb{R}^n : \phi(x; c) = \phi \ (\parallel x - c \parallel)$$
. \Box

$$\varphi(r) \to 0 \text{ as } r \to \infty$$

typically, || x || denotes Euclidean norm of vector x

examples:

$$\varphi(r) = \exp\left(-\frac{r^2}{\sigma^2}\right)$$

Gaussian

unbounded

$$\varphi(r) = \frac{3}{4} (1 - r^2) \cdot 1_{\{r \le 1\}}$$

Epanechnikov

bounded

local

$$\varphi(r) = \frac{\pi}{4} \cos\left(\frac{\pi}{2}r\right) \cdot 1_{\{r \le 1\}}$$

technische universität

Cosine

bounded

G. Rudolph: Computational Intelligence • Winter Term 2013/14

Radial Basis Function Nets (RBF Nets)

Lecture 03

given : N training patterns (x_i, y_i) and q RBF neurons

find : weights w₁, ..., w_a with minimal error

solution:

we know that $f(x_i) = y_i$ for i = 1, ..., N and therefore we insist that

$$\sum_{k=1}^{q} w_k \cdot \varphi(\|x_i - c_k\|) = y_i$$

$$\downarrow \qquad \qquad \downarrow$$

$$\text{unknown known value known value}$$

$$\Rightarrow \sum_{k=1}^{q} w_k \cdot p_{ik} = y_i$$

 \Rightarrow N linear equations with q unknowns

Radial Basis Function Nets (RBF Nets)

Lecture 03

in matrix form: P w = y with $P = (p_{ik})$ and P: N x q, y: N x 1, w: q x 1,

case N = q: $w = P^{-1} y$ if P has full rank

case N < q: many solutions but of no practical relevance

case N > q: $w = P^+ y$ where P^+ is Moore-Penrose pseudo inverse

P w = y | P' from left hand side (P' is transpose of P)

P'P w = P' y $| \cdot (P'P)^{-1}$ from left hand side

 $(P'P)^{-1} P'P w = (P'P)^{-1} P' y$ | simplify

technische universität dortmund

unit matrix

G. Rudolph: Computational Intelligence • Winter Term 2013/14

Radial Basis Function Nets (RBF Nets)

Lecture 03

complexity (naive)

 $W = (P'P)^{-1} P' y$

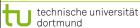
P'P: N² q inversion: q³ P'y: qN multiplication: q²

 $O(N^2 q)$

remark: if N large then inaccuracies for P'P likely

 \Rightarrow first analytic solution, then gradient descent starting from this solution

requires differentiable basis functions!



G. Rudolph: Computational Intelligence • Winter Term 2013/14

14

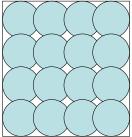
Radial Basis Function Nets (RBF Nets)

Lecture 03

so far: tacitly assumed that RBF neurons are given

 \Rightarrow center c_k and radii σ considered given and known

how to choose c_{ν} and σ ?



x x x x

if training patterns inhomogenously distributed then first cluster analysis

choose center of basis function from each cluster, use cluster size for setting $\boldsymbol{\sigma}$

 $\begin{bmatrix} x \\ x \end{bmatrix}$

uniform covering

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2013/14 15

Radial Basis Function Nets (RBF Nets)

Lecture 03

advantages:

- additional training patterns → only local adjustment of weights
- optimal weights determinable in polynomial time
- regions not supported by RBF net can be identified by zero outputs

disadvantages:

- number of neurons increases exponentially with input dimension
- unable to extrapolate (since there are no centers and RBFs are local)