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Plan for Today 

●  Fuzzy Sets 

 Basic Definitions and Results for Standard Operations 

 Algebraic Difference between Fuzzy and Crisp Sets  
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Fuzzy Systems: Introduction 

Observation: 

Communication between people is not precise but somehow fuzzy and vague. 

Despite these shortcomings in human language we are able  

●  to process fuzzy / uncertain information and 

●  to accomplish complex tasks!  

“If the water is too hot then add a little bit of cold water.“ 

Goal: 

Development of formal framework to process fuzzy statements in computer. 
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Fuzzy Systems: Introduction 

“The water is hot.” Consider the statement: 

Which temperature defines “hot”? 

A single temperature T = 100° C?  

No! Rather, an interval of temperatures: T 2 [ 70, 120 ] ! 

But who defines the limits of the intervals? 

Some people regard temperatures > 60° C as hot, others already T > 50° C! 

Idea: All people might agree that a temperature in the set [70, 120]  
         defines a hot temperature! 

If T = 65°C not all people regard this as hot. It does not belong to [70,120]. 
But it is hot to some degree.  
Or: T = 65°C belongs to set of hot temperatures to some degree! 

)    Can be the concept for capturing fuzziness!     ) Formalize this concept! 
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Fuzzy Sets: The Beginning … 

Remark:  

A fuzzy set F is actually a map F(x). Shorthand notation is simply F.  

Definition 

A map F: X → [0,1] ½ R that assigns its degree of membership F(x)  
to each x 2 X is termed a fuzzy set. 

Same point of view possible for traditional (“crisp”) sets: 

characteristic / indicator function of (crisp) set A 

) membership function interpreted as generalization of characteristic function 
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Fuzzy Sets: Membership Functions 

triangle function trapezoidal function 
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Fuzzy Sets: Membership Functions 

paraboloidal function gaussoid function 

Lecture 05 

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14 
8 

Fuzzy Sets: Basic Definitions 

Definition 

A fuzzy set F over the crisp set X is termed 

a)  empty if F(x) = 0 for all x 2 X, 

b)  universal if F(x) = 1 for all x 2 X. 

Empty fuzzy set is denoted by O. Universal set is denoted by U.  ■ 

Definition 

Let A and B be fuzzy sets over the crisp set X.  

a) A and B are termed equal, denoted A = B, if A(x) = B(x) for all x 2 X. 

b) A is a subset of B, denoted A µ B, if A(x) ≤ B(x) for all x 2 X. 

c) A is a strict subset of B, denoted A ½ B, if A µ B and 9 x 2 X: A(x) < B(x). ■ 

Remark: A strict subset is also called a proper subset. 
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Fuzzy Sets: Basic Relations 

Theorem 

Let A, B and C be fuzzy sets over the crisp set X. The following relations are valid: 

a) reflexivity : A µ A. 

b) antisymmetry : A µ B and B µ A ) A = B.  

c) transitivity : A µ B and B µ C ) A µ C. 

Proof:   (via reduction to definitions and exploiting operations on crisp sets) 

ad a) 8 x 2 X: A(x) ≤ A(x). 

ad b) 8 x 2 X: A(x) ≤ B(x) and B(x) ≤ A(x) ) A(x) = B(x). 

ad c) 8 x 2 X: A(x) ≤ B(x) and B(x) ≤ C(x) ) A(x) ≤ C(x). q.e.d. 

Remark: Same relations valid for crisp sets. No Surprise! Why? 
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Fuzzy Sets: Standard Operations 

Definition 

Let A and B be fuzzy sets over the crisp set X. The set C is the 

a)  union of A and B, denoted C = A [ B, if C(x) = max{ A(x), B(x) } for all x 2 X; 

b)  intersection of A and B, denoted C = A Å B, if C(x) = min{ A(x), B(x) } for all x 2 X; 

c)  complement of A, denoted  C = Ac, if C(x) = 1 – A(x) for all x 2 X.        ■ 

A 

B 

A [ B 

A Å B 

Ac 

Bc 
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Fuzzy Sets: Standard Operations in 2D 

A [ B B A 

interpretation: membership = 0 is white, = 1 is black, in between is gray 

standard fuzzy union 
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Fuzzy Sets: Standard Operations in 2D 

A Å B B A 

interpretation: membership = 0 is white, = 1 is black, in between is gray 

standard fuzzy intersection 
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Fuzzy Sets: Standard Operations in 2D 

Ac A 

interpretation: membership = 0 is white, = 1 is black, in between is gray 

standard fuzzy complement 
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Fuzzy Sets: Basic Definitions 

Definition 

The fuzzy set A over the crisp set X has 

a)  height hgt(A)  = sup{ A(x) : x 2 X }, 

b)  depth dpth(A) =  inf { A(x) : x 2 X }.       ■  

hgt(A) = 0.8 

dpth(A) = 0.2 

hgt(A) = 1 

dpth(A) = 0 
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Fuzzy Sets: Basic Definitions 

Definition 

The fuzzy set A over the crisp set X is 

a)  normal   if hgt(A) = 1 

b)  strongly normal if 9 x 2 X: A(x) = 1 

c)  co-normal  if dpth(A) = 0 

d)  strongly co-normal if 9 x 2 X: A(x) = 0 

e)  subnormal  if 0 < A(x) < 1 for all x 2 X.    ■  

A is (co-) normal 

but not strongly (co-) normal 

Remark: 

How to normalize a non-normal fuzzy set A? 

Lecture 05 

G. Rudolph: Computational Intelligence ▪ Winter Term 2013/14 
16 

Fuzzy Sets: Basic Definitions 

Definition 

The cardinality card(A) of a fuzzy set A over the crisp set X is  

 

 

 

          ■ 
Rn 

Examples: 

a) A(x) = qx with q 2 (0,1), x 2 N0 ) card(A) = 
  

b) A(x) = 1/x with x 2 N  ) card(A) = 

c) A(x) = exp(-|x|)   ) card(A) = 
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Fuzzy Sets: Basic Results 

Theorem 

For fuzzy sets A, B and C over a crisp set X the standard union operation is  

a)  commutative  : A [ B = B [ A  

b)  associative  : A [ (B [ C) = (A [ B) [ C 

c)  idempotent  : A [ A = A 

d)  monotone  : A µ B  ) (A [ C) µ (B [ C). 

Proof:  (via reduction to definitions) 

ad a) A [ B = max { A(x), B(x) } = max { B(x), A(x) } = B [ A. 

ad b) A [ (B [ C) = max { A(x), max{ B(x), C(x) } }   = max { A(x), B(x) , C(x) }   
           = max { max { A(x), B(x) } , C(x) } = (A [ B) [ C. 

ad c) A [ A = max { A(x), A(x) } = A(x) = A. 

ad d) A [ C = max { A(x), C(x) } ≤ max { B(x), C(x) } = B [ C since A(x) ≤ B(x). q.e.d. 
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Fuzzy Sets: Basic Results 

Theorem 

For fuzzy sets A, B and C over a crisp set X the standard intersection operation is  

a)  commutative  : A Å B = B Å A  

b)  associative  : A Å (B Å C) = (A Å B) Å C 

c)  idempotent  : A Å A = A 

d)  monotone  : A µ B  ) (A Å C) µ (B Å C). 

Proof:  (analogous to proof for standard union operation)   ■ 
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Fuzzy Sets: Basic Results 

Theorem 

For fuzzy sets A, B and C over a crisp set X there are the distributive laws 

a) A [ (B Å C)  =  (A [ B) Å (A [ C) 

b) A Å (B [ C)  =  (A Å B) [ (A Å C). 

Proof: 
ad a) max { A(x), min { B(x), C(x) } } = 

max { A(x), B(x) }  if  B(x) ≤ C(x) 

max { A(x), C(x) }  otherwise 

If B(x) ≤ C(x) then max { A(x), B(x) } ≤ max { A(x), C(x) }. 

Otherwise   max { A(x), C(x) } ≤ max { A(x), B(x) }. 

) result is always the smaller max-expression 

) result is  min { max { A(x), B(x) }, max { A(x), C(x) } } = (A [ B) Å (A [ C). 

ad b) analogous.        ■ 
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Fuzzy Sets: Basic Results 

Theorem 

If A is a fuzzy set over a crisp set X then 

a) A [ O = A 

b) A [ U = U 

c) A Å O = O 

d) A Å U = A. 

Proof: 
(via reduction to definitions) 

ad a)  max { A(x), 0 } = A(x) 

ad b)  max { A(x), 1 } = U(x)  ´ 1 

ad c)  min { A(x), 0 }  = O(x)  ´ 0 

ad d)  min { A(x), 1 }  = A(x).     ■ 

Breakpoint: 

So far we know that fuzzy sets with operations Å and [ are a distributive lattice. 
If we can show the validity of 

• (Ac)c = A 

• A [ Ac = U 

• A Å Ac = O ) Fuzzy Sets would be Boolean Algebra! Is it true ? 
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Fuzzy Sets: Basic Results 

Theorem 

If A is a fuzzy set over a crisp set X then 

a) (Ac)c = A     

b) ½ ≤ (A [ Ac)(x) < 1   for A(x) 2 (0,1)   

c) 0  < (A Å Ac)(x) ≤ ½  for A(x) 2 (0,1) 

Proof: 

ad a) 8 x 2 X: 1 – (1 – A(x)) = A(x).  

ad b) 8 x 2 X: max { A(x), 1 – A(x) } = ½ + | A(x) – ½ | ≥ ½.  

         Value 1 only attainable for A(x) = 0 or A(x) = 1. 

ad c) 8 x 2 X: min { A(x), 1 – A(x) } = ½ - | A(x) – ½ | ≤ ½.  

         Value 0 only attainable for A(x) = 0 or A(x) = 1. 
q.e.d. 

Remark: 
Recall the identities 
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Fuzzy Sets: Algebraic Structure 

Conclusion: 

Fuzzy sets with [ and Å are a distributive lattice. 

But in general: 

a) A [ Ac ≠ U 

b) A Å Ac ≠ O 
) Fuzzy sets with [ and Å are not a Boolean algebra! 

Remarks: 

ad a)  The law of excluded middle does not hold! 

 („Everything must either be or not be!“) 

ad b) The law of noncontradiction does not hold! 

 („Nothing can both be and not be!“)  

)  Nonvalidity of these laws generate the desired fuzziness! 

but: Fuzzy sets still endowed with much algebraic structure (distributive lattice)! 
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Fuzzy Sets: DeMorgan‘s Laws 

Theorem 

If A and B are fuzzy sets over a crisp set X with standard union, intersection, 

and complement operations then DeMorgan‘s laws are valid: 

a) (A Å B)c = Ac [ Bc 

b) (A [ B)c = Ac Å Bc 

Proof:   (via reduction to elementary identities) 

ad a) (A Å B)c(x) = 1 – min { A(x), B(x) } = max { 1 – A(x), 1 – B(x) } = Ac(x) [ Bc(x)  

ad b) (A [ B)c(x) = 1 – max { A(x), B(x) } = min { 1 – A(x), 1 – B(x) } = Ac(x) Å Bc(x)  

q.e.d. 

Question : Why restricting result above to  “standard“  operations? 
Conjecture : Most likely there also exist  “nonstandard”  operations! 


