technische universität dortmund	Plan for Today Lecture 05
Computational Intelligence Winter Term 2013/14	 Fuzzy Sets Basic Definitions and Results for Standard Operations Algebraic Difference between Fuzzy and Crisp Sets
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund	
	G. Rudolph: Computational Intelligence • Winter Term 2013/4 dortmund
Fuzzy Systems: Introduction Lecture 05	Fuzzy Systems: Introduction Lecture 05
Observation: Communication between people is not precise but somehow <u>fuzzy</u> and <u>vague</u> .	Consider the statement: "The water is hot." Which temperature defines "hot"?
"If the water is too hot then add a little bit of cold water."	A single temperature T = 100° C?
 Despite these shortcomings in human language we are able to process fuzzy / uncertain information and 	No! Rather, an interval of temperatures: $T \in [70, 120]$! But who defines the limits of the intervals? Some people regard temperatures > 60° C as hot, others already T > 50° C!
 to accomplish complex tasks! 	Idea: All people might agree that a temperature in the set [70, 120] defines a hot temperature!
Goal:	If $T = 65^{\circ}C$ not all people regard this as hot. It does not belong to [70,120].
Development of formal framework to process fuzzy statements in computer.	But it is hot to some <u>degree</u> . Or: T = 65°C belongs to set of hot temperatures to some <u>degree</u> !
	\Rightarrow Can be the concept for capturing fuzziness! \Rightarrow Formalize this concept
U technische universität G. Rudolph: Computational Intelligence • Winter Term 2013/14 dortmund 3	G. Rudolph: Computational Intelligence • Winter Term 2013, dortmund

Fuzzy Sets: The Beginning ...

Lecture 05

Fuzzy Sets: Membership Functions

Lecture 05

Definition

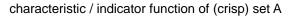
A map $F: X \to [0,1] \subset \mathbb{R}$ that assigns its *degree of membership* F(x) to each $x \in X$ is termed a **fuzzy set**.

Remark:

A fuzzy set F is actually a map F(x). Shorthand notation is simply F.

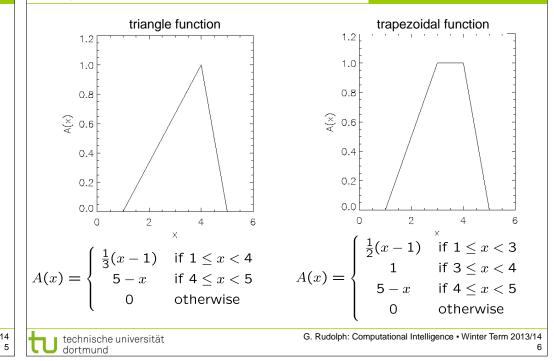
Same point of view possible for traditional ("crisp") sets:

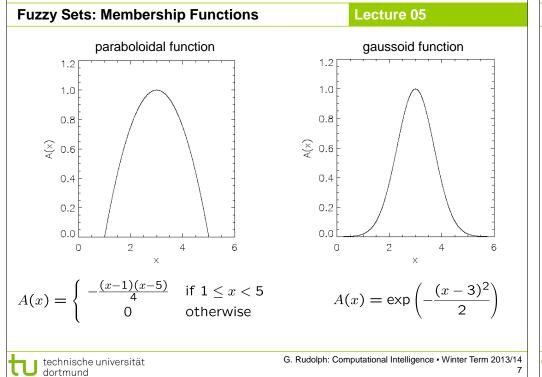
$$A(x) := \mathbf{1}_{[x \in A]} := \mathbf{1}_A(x) := \begin{cases} \mathbf{1} & \text{, if } x \in A \\ \mathbf{0} & \text{, if } x \notin A \end{cases}$$



 \Rightarrow membership function interpreted as generalization of characteristic function

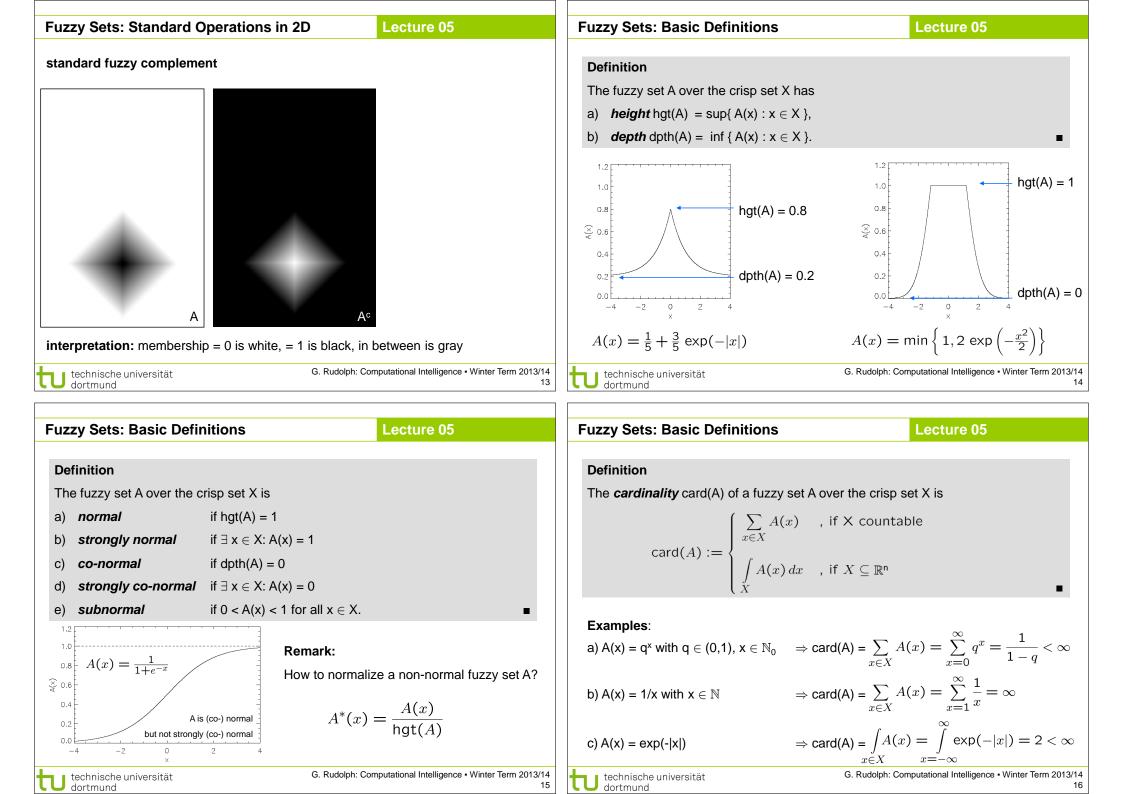
U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2013/14





zzy Sets: Bas	sic Definitions Lecture 05	
Definition		
A fuzzy set F ov	ver the crisp set X is termed	
a) empty	$\text{ if }F(x)=0\text{ for all }x\inX,$	
o) universal	$\text{if }F(x)=1\text{ for all }x\inX.$	
Empty fuzzy set	t is denoted by $\mathbb{O}.$ Universal set is denoted by $\mathbb{U}.$	
Empty fuzzy set	t is denoted by $\mathbb{O}.$ Universal set is denoted by $\mathbb{U}.$	
Empty fuzzy set Definition	t is denoted by $\mathbb{O}.$ Universal set is denoted by $\mathbb{U}.$	
Definition	t is denoted by \mathbb{O} . Universal set is denoted by \mathbb{U} . fuzzy sets over the crisp set X.	
Definition _et A and B be f		Х.
Definition Let A and B be f a) A and B are	fuzzy sets over the crisp set X.	Х.

technische universität dortmund



uzzy Sets: Basic R	esults	Lecture 05	F	uzzy Sets: Basic Re	esults	Lecture 05
Theorem				Theorem		
For fuzzy sets A, B an	d C over a crisp set X the standa	ard union operation is		For fuzzy sets A, B and	C over a crisp set X the standard	d intersection operation is
a) commutative	$: A \cup B = B \cup A$			a) commutative	$: A \cap B = B \cap A$	
b) associative	$:A\cup(B\cupC)=(A\cupB)\cupC$			b) associative	$: A \cap (B \cap C) = (A \cap B) \cap C$	
c) idempotent	$: A \cup A = A$			c) idempotent	$: A \cap A = A$	
d) <i>monotone</i>	$: A \subseteq B \ \Rightarrow (A \cup C) \subseteq (B \cup C)$	C).		d) <i>monotone</i>	$: A \subseteq B \ \Rightarrow (A \cap C) \subseteq (B \cap C)$	
Proof: (via reduction	to definitions)			Proof: (analogous to p	proof for standard union operation) –
ad a) A \cup B = max { A($\{x\}, B(x) \} = max \{ B(x), A(x) \} = B$	$B \cup A.$				
	ax { A(x), max{ B(x), C(x) } } = r ax { max { A(x), B(x) } , C(x) } = (
ad c) $A \cup A = \max \{ A($	x), $A(x) \} = A(x) = A$.					
ad d) A \cup C = max { A	$\{x\}, C(x)\} \le \max \{ B(x), C(x) \} = B$	$B \cup C$ since $A(x) \le B(x)$. q.e.d	-			
U technische universität dortmund	G. Rudolph: C	omputational Intelligence • Winter Term 2013/1		U technische universität dortmund	G. Rudolph: Con	putational Intelligence • Winter Term 2013

Fuzzy Sets: Basic Results	Lecture 05	Fuzzy Sets: Basic Results	Lecture 05
Theorem		Theorem	Proof:
For fuzzy sets A, B and C over a crisp set X there ar	e the <u>distributive laws</u>	If A is a fuzzy set over a crisp set X then	(via reduction to definitions)
a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		a) $A \cup \mathbb{O} = A$	ad a) max { $A(x), 0$ } = $A(x)$
b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.		b) $A \cup \mathbb{U} = \mathbb{U}$	ad b) max { A(x), 1 } = $\mathbb{U}(x) \equiv 1$
Drasfi		c) $A \cap \mathbb{O} = \mathbb{O}$	ad c) min { A(x), 0 } = $\mathbb{O}(x) \equiv 0$
ad a) max { A(x) min { B(x) C(x) } } = \langle	$B(x)$ } if $B(x) \le C(x)$ $C(x)$ } otherwise	d) $A \cap \mathbb{U} = A$.	ad d) min { A(x), 1 } = A(x). ■
If $B(x) \le C(x)$ then max { $A(x)$, $B(x)$ } \le max { $A(x) \le C(x)$	(x), C(x) }.	Breakpoint:	
Otherwise $\max \{ A(x), C(x) \} \le \max \{ A(x), C(x) \} \le \max \{ A(x), C(x) \} \le \max \{ A(x), C(x) \} $	(x), B(x) }.	So far we know that fuzzy sets with ope	rations \cap and \cup are a <u>distributive lattice</u> .
		If we can show the validity of	
\Rightarrow result is always the smaller max-expression	1	• (A ^c) ^c = A	
\Rightarrow result is min { max { A(x), B(x) }, max { A(x), $C(x) \} = (A \cup B) \cap (A \cup C).$	$\bullet A \cup A^{c} = \mathbb{U}$	
ad b) analogous.	-	• A \cap A ^c = \mathbb{O} \Rightarrow Fuzzy	Sets would be Boolean Algebra! Is it true
U technische universität G. Rudolpl dortmund	n: Computational Intelligence • Winter Term 2013/14 19	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2013/

uzzy Sets: Basic Results	ecture 05	Fuzzy S	ets: Algebraic Structure	Lecture 05
Theorem If A is a fuzzy set over a crisp set X then a) $(A^c)^c = A$ b) $\frac{1}{2} \le (A \cup A^c)(x) < 1$ for $A(x) \in (0,1)$ c) $0 < (A \cap A^c)(x) \le \frac{1}{2}$ for $A(x) \in (0,1)$	Remark: Recall the identities $\min\{a,b\} = \frac{a+b- a-b }{2}$ $\max\{a,b\} = \frac{a+b+ a-b }{2}$	But in (a) A ∪	sets with ∪ and ∩ are a distributive lattic general: _A° ≠ Ⅲ _ 〕	e. are not a Boolean algebra!
Proof.		Remar	ks:	
ad a) $\forall x \in X: 1 - (1 - A(x)) = A(x).$		ad a)	The law of excluded middle does no	ot hold!
ad b) $\forall x \in Y$; may $\{A(x) \mid 1 = A(x)\} = \frac{1}{11} + A(x) = \frac{1}{11}$			("Everything must either be or not be!	")
ad b) $\forall x \in X$: max { A(x), 1 - A(x) } = $\frac{1}{2}$ + A(x) - $\frac{1}{2}$ $\geq \frac{1}{2}$.		ad b)	The law of noncontradiction does n	ot hold!
Value 1 only attainable for $A(x) = 0$ or $A(x) = 1$.			("Nothing can both be and not be!")	
ad c) $\forall x \in X$: min { A(x), 1 – A(x) } = $\frac{1}{2}$ - A(x) – $\frac{1}{2}$ $\leq \frac{1}{2}$.				
Value 0 only attainable for $A(x) = 0$ or $A(x) = 1$.		\Rightarrow	Nonvalidity of these laws generate the	e <u>desired</u> fuzziness!
q.e.d.		but:	Fuzzy sets still endowed with much a	gebraic structure (distributive lattice)!
U technische universität G. Rudolph: Compu dortmund	tational Intelligence • Winter Term 2013/14 21			Rudolph: Computational Intelligence • Winter Term 2013/1

Fuzzy Sets: De	Morgan's Laws		Lecture 05	
Theorem				
If A and B are f	uzzy sets over a crisp set X wi	th standar	d union, intersection,	
and compleme	nt operations then DeMorgan	's laws are	e valid:	
a) $(A \cap B)^c = A$	∿° ∪ B°			
b) $(A \cup B)^c = A$	^c ∩ B ^c			
Proof: (via rec	luction to elementary identities)		
ad a) (A \cap B) ^c (x) = 1 – min { A(x), B(x) } = max	{ 1 - A(x)	, $1 - B(x) \} = A^c(x) \cup B^c(x)$	
ad b) (A \cup B) ^c (x) = 1 – max { A(x), B(x) } = min	{ 1 - A(x)	, 1 – B(x) } = A ^c (x) \cap B ^c (x)	
			q.e.d.	
Question	: Why restricting result above	ve to " <u>star</u>	ndard" operations?	
Conjecture	: Most likely there also exis	t " <u>nonstar</u>	ndard" operations!	
technische unive dortmund	ersität G	. Rudolph: Com	nputational Intelligence • Winter Term 207	13/14 23