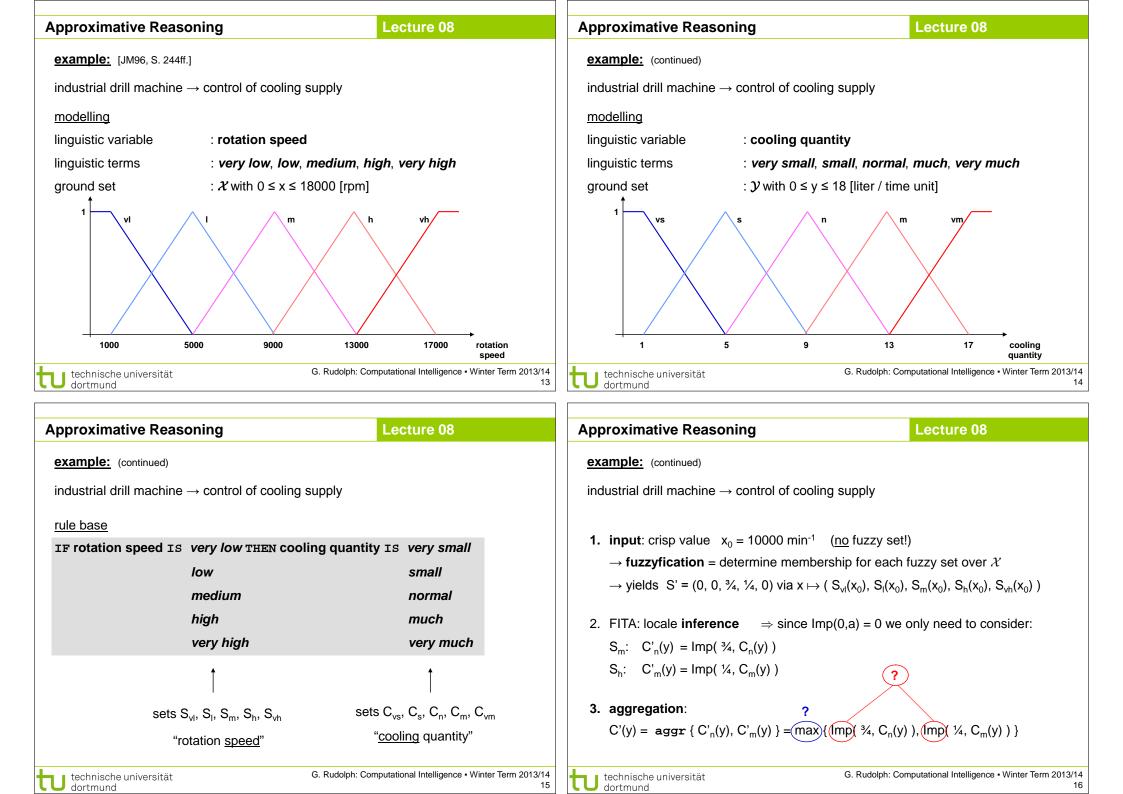
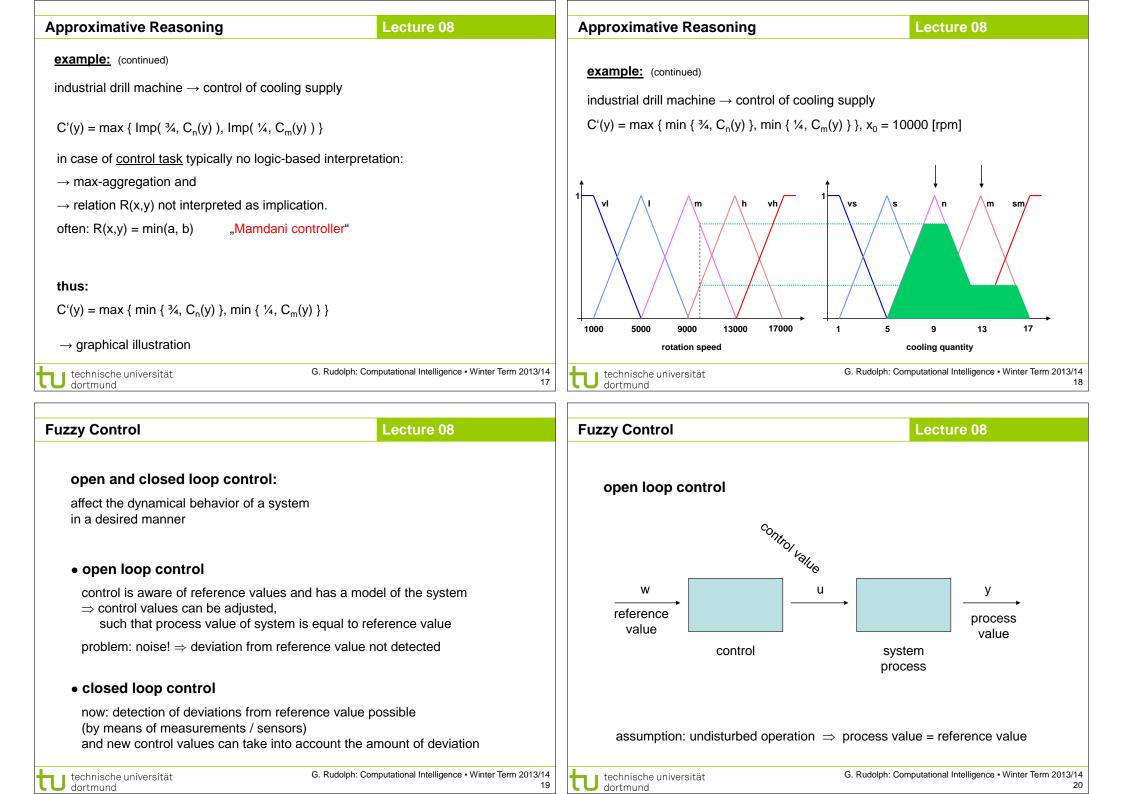
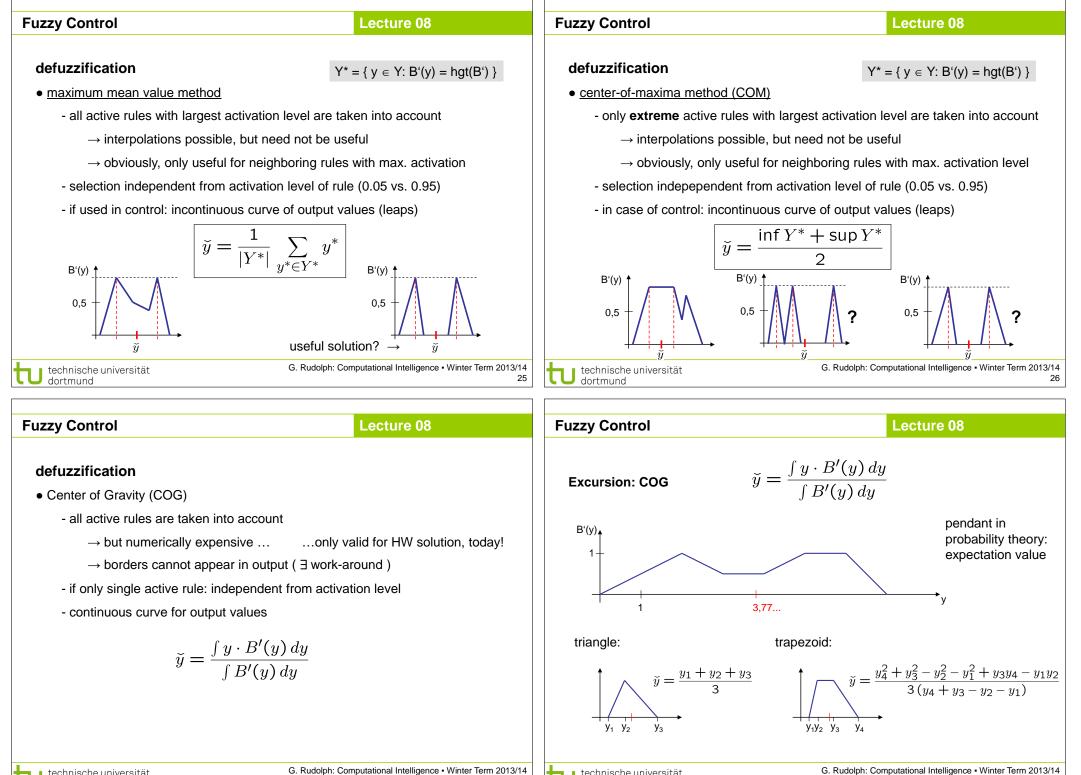
technische universität		Plan for Toda	y	Le	cture 08
Computational Intelligen Winter Term 2013/14	ce	ApproxitFuzzy C	mate Reasoning control		
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund		technische uni dortmund	versität	G. Rudolph: Computati	onal Intelligence • Winter Term 2013/14 2
Approximative Reasoning	Lecture 08	Approximativ	o Possoning		cture 08
		Approximativ	encasoning	Le	
So far: • p: IF X is A THEN Y is B $\rightarrow R(x, y) = Imp(A(x), B(y))$	rule as relation; fuzzy implication	here: A'(x) =	$\begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$	crisp input!	
• rule: IF X is A THEN Y is B fact: X is A' conclusion: Y is B' \rightarrow B'(y) = sup _{x \in X} t(A'(x), R(x, y))	composition rule of inference	B'(y) =	$ \sup_{x \in X} t(A'(x), \operatorname{Imp}(A(x))) $ $ \left\{ \begin{array}{l} \sup_{x \neq x_0} t(0, \operatorname{Imp}(A(x)), B(x)) \\ t(1, \operatorname{Imp}(A(x_0)), B(x)) \end{array} \right\} $))) for $x \neq x_0$	
Thus: • B'(y) = $\sup_{x \in X} t(A'(x), Imp(A(x), B(y)))$	given : fuzzy rule input : fuzzy set A' output : fuzzy set B'	=	<pre> { 0 Imp((A(x_0), B(y)) </pre>	for $x \neq x_0$ for $x = x_0$	since $t(0, a) = 0$ since $t(a, 1) = a$
technische universität G. F dortmund	tudolph: Computational Intelligence - Winter Term 2013/14	technische uni dortmund	versität	G. Rudolph: Computati	onal Intelligence • Winter Term 2013/14 4

Approximative Reasoning	Lecture 08	Approximative Reasoning	Lecture 08	
Lemma:		Multiple rules:		
a) $t(a, 1) = a$		IF X is A_1 , THEN Y is B_1	$\rightarrow R_1(x, y) = Imp_1(A_1(x), B_1(y))$	
b) $t(a, b) \le min \{a, b\}$		IF X is A ₂ , THEN Y is B ₂	$\rightarrow R_2(x,y) = Imp_2(A_2(x),B_2(y))$	
c) $t(0, a) = 0$		IF X is A ₃ , THEN Y is B ₃	$\rightarrow R_3(x,y) = Imp_3(A_3(x),B_3(y))$	
Proof:	by a)	IF X is A _n , THEN Y is B _n X is A'	$\rightarrow R_{n}(x,y) = Imp_{n}(A_{n}(x),B_{n}(y))$	
ad a) Identical to axiom 1 of t-norms.		Y is B'		
ad b) From monotonicity (axiom 2) follows for the Commutativity (axiom 3) and monotonicitities $t(a, b) = t(b, a) \le t(b, 1) = b$. Thus, $t(a, b)$	ty lead in case of $a \le 1$ to	Multiple rules for <u>crisp input</u> : x_0 B ₁ '(y) = Imp ₁ (A ₁ (x ₀), B ₁ (y))	is given	
equal to a as well as b, which in turn imp			aggregation of rules or local inferences necessary!	
ad c) From b) follows $0 \le t(0, a) \le min \{0, a\} =$	0 and therefore $t(0, a) = 0$.	$B_{n}(y) = Imp_{n}(A_{n}(x_{0}), B_{n}(y))$	local melences necessary!	
		aggregate! \Rightarrow B'(y) = aggr{ B ₁ '(y),	, $B_n(y)$, where $aggr = \begin{cases} min \\ max \end{cases}$	
G. F dortmund	Rudolph: Computational Intelligence • Winter Term 2013/14 5	technische universität	G. Rudolph: Computational Intelligence • Winter Term 2013/14 6	
		Gordinana		
Approximative Reasoning	Lecture 08	Approximative Reasoning	Lecture 08	
FITA: "First inference, then aggregate!"				
1. Each rule of the form IF X is A_k THEN Y is B	$\mathbf{s}_{\mathbf{k}}$ must be transformed by	1. Which principle is better? FITA	A OF FAIL?	
an appropriate fuzzy implication $Imp_k(\cdot, \cdot)$ to $P_k(x, y) = Imp_k(A_k(y), P_k(y))$	a relation R _k :	2. Equivalence of FITA and FATI	?	
$R_{k}(x, y) = Imp_{k}(A_{k}(x), B_{k}(y)).$ 2. Determine $B_{k}(y) = R_{k}(x, y) \circ A'(x)$ for all $k = 1,, n$ (local inference).		FITA: $B'(y) = \beta(B_1'(y),, B_n'(y))$		
2. Determine $B_k(y) = R_k(x, y) \in A(x)$ for all $k = 3$. Aggregate to $B'(y) = \beta(B_1'(y),, B_n'(y))$.		$= \beta(R_1(x, y) \circ A)$	f(x),, R _n (x, y) ο A'(x))	
5. Aggregate to $D(y) = p(D_1(y),, D_n(y)).$		FATI: $B'(y) = R(x, y) \circ A'(x)$		
FATI: "First aggregate, then inference!"		FATI: $B'(y) = R(x, y) \circ A'(x)$ = $\alpha(R_1(x, y),, x)$	$B(x, y) \rightarrow A'(x)$	
	P must be transformed by	- u(N ₁ (x, y),,	· · _n (^, y) / ~ / (^)	
1. Each rule of the form IF X ist A_k THEN Y ist an appropriate fuzzy implication $Imp_k(\cdot, \cdot)$ to $R_k(x, y) = Imp_k(A_k(x), B_k(y)).$				
2. Aggregate $R_1,, R_n$ to a superrelation with $R(x, y) = \alpha(R_1(x, y),, R_n(x, y)).$	h aggregating function $\alpha(\cdot)$:			
3. Determine $B'(y) = R(x, y) \circ A'(x)$ w.r.t. super	relation (inference).			
technische universität G. F dortmund	Rudolph: Computational Intelligence • Winter Term 2013/14 7	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2013/14 8	


Approximative Reasoning	Lecture 08	Approximative Reasoning	Lecture 08
special case: $A'(x) = \begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$	crisp input!	• AND-connected premises IF $X_1 = A_{11} AND X_2 = A_{12} AND AND X_m = A_{1m}$	THEN Y = B ₁
On the equivalence of FITA and FATI:		IF $X_n = A_{n1}$ AND $X_2 = A_{n2}$ AND AND $X_m = A_{nm}$ reduce to single premise for each rule k:	THEN Y = B _n
FITA: $B'(y) = \beta(B_1'(y),, B_n'(y))$ = $\beta(Imp_1(A_1(x_0), B_1(y)),,$	$Imp_n(A_n(x_0), B_n(y)))$	$A_{k}(x_{1},,x_{m}) = \min \{ A_{k1}(x_{1}), A_{k2}(x_{2}),, A_{km}(x_{m}) \}$	or in general: t-norm
FATI: $B'(y) = R(x, y) \circ A'(x)$ = $\sup_{x \in X} t(A'(x), R(x, y))$ = $R(x_0, y)$ = $\alpha(Imp_1(A_1(x_0), B_1(y)),$	(from now: special case)	• OR-connected premises IF $X_1 = A_{11}$ OR $X_2 = A_{12}$ OR OR $X_m = A_{1m}$ THE IF $X_n = A_{n1}$ OR $X_2 = A_{n2}$ OR OR $X_m = A_{nm}$ THE	
evidently: sup-t-composition with arbitrary t-no		reduce to single premise for each rule k: $A_k(x_1,,x_m) = \max \{A_{k1}(x_1), A_{k2}(x_2),, A_{km}(x_m)\}$	<pre>b: Computational Intelligence • Winter Term 2013</pre>

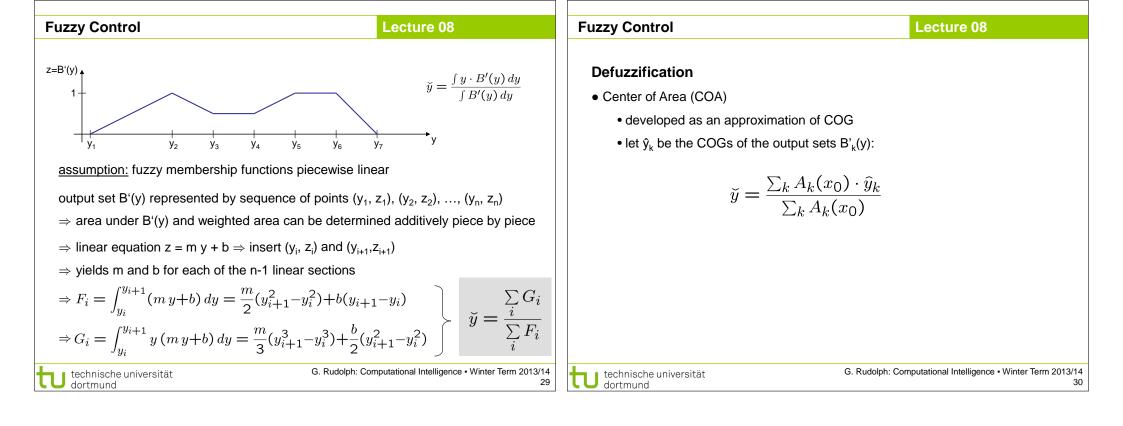

Lecture 08 Lecture 08 **Approximative Reasoning** Approximative Reasoning important: important: • if rules of the form IF X is A THEN Y is B interpreted as logical implication • if rules of the form IF X is A THEN Y is B are not interpreted as logical implications, then the function $Fct(\cdot)$ in \Rightarrow R(x, y) = Imp(A(x), B(y)) makes sense R(x, y) = Fct(A(x), B(y))• we obtain: $B'(y) = \sup_{x \in X} t(A'(x), R(x, y))$ can be chosen as required for desired interpretation. \Rightarrow the worse the match of premise A'(x), the larger is the fuzzy set B'(y) • frequent choice (especially in fuzzy control): \Rightarrow follows immediately from axiom 1: a \leq b implies Imp(a, z) \geq Imp(b, z) $- R(x, y) = min \{ A(x), B(x) \}$ Mamdami – "implication" $- R(x, y) = A(x) \cdot B(x)$ Larsen - "implication" interpretation of output set B'(y): \Rightarrow of course, they are no implications but special t-norms! • B'(y) is the set of values that are still possible \Rightarrow thus, if relation R(x, y) is given, • each rule leads to an additional restriction of the values that are still possible then the composition rule of inference \Rightarrow resulting fuzzy sets Bⁱ_k(y) obtained from single rules must be mutually intersected! $B'(y) = A'(x) \circ R(x, y) = \sup_{x \in X} \min \{A'(x), R(x, y)\}$ \Rightarrow aggregation via B'(y) = min { B₁'(y), ..., B_n'(y) } still can lead to a conclusion via fuzzy logic. G. Rudolph: Computational Intelligence • Winter Term 2013/14 technische universität technische universität

11


dortmund

dortmund

uzzy Control	Lecture 08	Fuzzy Control Lecture 08
closed loop control ^{Con} itio	noise	required: model of system / process → as differential equations or difference equations (DEs) → well developed theory available
veference value control	u y process value	 so, why fuzzy control? there exists no process model in form of DEs etc. (operator/human being has realized control by hand) process with high-dimensional nonlinearities → no classic methods available control goals are vaguely formulated ("soft" changing gears in cars)
control deviation = r	reference value – process value G. Rudolph: Computational Intelligence • Winter Term 2013/14 21	
fuzzy description of control bel		defurrification
IF X is A_1 , THEN Y is B_1 IF X is A_2 , THEN Y is B_2 IF X is A_3 , THEN Y is B_3 IF X is A_n , THEN Y is B_n X is A' Y is B'	similar to approximative reasoning	• <u>maximum method</u> • <u>maximum method</u> - only active rule with largest activation level is taken into account \rightarrow suitable for pattern recognition / classification \rightarrow decision for a single alternative among finitely many alternatives - selection independent from activation level of rule (0.05 vs. 0.95)
		- if used for control: incontinuous curve of output values (leaps)
but fact A' is not a fuzzy set but a \rightarrow actually, it is the current proce		$\check{y} = \operatorname{argmax} B'(y)$
	ess value	$ \begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & & $
\rightarrow actually, it is the current proce fuzzy controller executes inferen	ess value nce step for the process / system	



technische universität dortmund

27

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2013/14 28

