

Z ~ N(0, C) with density $f_Z(x) = \frac{1}{(2\pi)^{n/2} |C|^{1/2}} \exp\left(-\frac{1}{2}x'C^{-1}x\right)$

since then many proposals how to adapt the covariance matrix

 \Rightarrow extreme case: use n+1 pairs (x, f(x)),

apply multiple linear regression to obtain estimators for A, b, c

invert estimated matrix A! OK, **but**: O(n⁶)! (Rudolph 1992)

which is parallel to longest main principal axis of Hessian,

sooner or later we approach longest main principal axis of Hessian,

now negative gradient direction coincidences with direction to optimum,

direction! (proof next slide)

most (effective) algorithms behave like this:

run roughly into negative gradient direction,

which is parallel to the longest main principal axis of the inverse covariance matrix (Schwefel OK in this situation)

3

Towards CMA-ES	Lecture 11	Towards CMA-ES	Lecture 11
$Z = rQu, A = B'B, B = Q^{-1}$		Apart from (inefficient) regression, how	can we get matrix elements of Q?
$ \begin{aligned} f(x + rQu) &= \frac{1}{2}(x + rQu)'A(x + rQu) + \\ &= \frac{1}{2}(x'Ax + 2rx'AQu + r^2u'Q) \\ &= f(x) + rx'AQu + rb'Qu + \frac{1}{2} \\ &= f(x) + r(Ax + b + \frac{r}{2}AQu)'Q \end{aligned} $	a'AQu) + b'x + rb'Qu + c $r^2u'Q'AQu$	$\Rightarrow iteratively: C^{(k+1)} = update(C^{(k)}, Pop$ <u>basic constraint</u> : C^{(k)} must be positive defined to the the the two sets that the two sets the	,
$= f(x) + r(\nabla f(x) + \frac{r}{2}AQu)'Q$	u l	Lemma	
$= f(x) + r \nabla f(x)' Qu + \frac{r^2}{2} u' Q$	'AQu	Let A and B be quadratic matrices and α,β	3 > 0.
$= f(x) + r \nabla f(x)' Qu + \frac{r^2}{2}$		a) A, B symmetric $\Rightarrow \alpha$ A + β B symmetric	2.
		b) A positive definite and B positive semid	lefinite $\Rightarrow \alpha A + \beta B$ positive definite
if Qu were deterministic \Rightarrow set Qu = - ∇ f(x) (direction of steepest descent)		$\begin{array}{l} \textbf{Proof:}\\ \text{ad a) } C = \alpha \ A + \beta \ B \ \text{symmetric, since } c_{ij} = \alpha \\ \text{ad b) } \forall x \in \mathbb{R}^n \setminus \{0\}: \ x'(\alpha A + \beta \ B) \ x = \alpha \ x'Ax \\ & > 0 \end{array}$., ., ., ., ., ., ., ., ., ., ., ., ., .
G. Rudolph: C. dortmund	omputational Intelligence - Winter Term 2013/14 5	tu technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2013/14

Towards CMA-ES	Lecture 11	CMA-ES	Lecture 11
Theorem A quadratic matrix $C^{(k)}$ is symmetric and positive definite f if it is built via the iterative formula $C^{(k+1)} = \alpha_k C^{(k)} + \beta_k v_k$ where $C^{(0)} = I_n$, $v_k \neq 0$, $\alpha_k > 0$ and liminf $\beta_k > 0$.			n each iteration! Instead, approximate <u>iteratively</u> ! (Hansen, Ostermeier et al. 1996ff.) on Evolutionary Algorithm (CMA-EA)
Proof: If $v \neq 0$, then matrix $V = vv'$ is symmetric and positive sem • as per definition of the dyadic product $v_{ij} = v_i \cdot v_j = v_j \cdot v_i$ • for all $x \in \mathbb{R}^n : x' (vv') x = (x'v) \cdot (v'x) = (x'v)^2 \ge 0$. Thus, the sequence of matrices $v_k v'_k$ is symmetric and p. Owing to the previous lemma matrix $C^{(k+1)}$ is symmetric and	_i = v _{ji} for all i, j and s.d. for k ≥ 0.	Set initial covariance matrix to C $C^{(t+1)} = (1-\eta) C^{(t)} + \eta \sum_{i=1}^{\mu} w_i d_i d_i^{i}$ $m = \frac{1}{\mu} \sum_{i=1}^{\mu} x_{i:\lambda} \qquad \text{mean of a}$	
$C^{(k)}$ is symmetric as well as p.d. and matrix $v_k v_k^{i}$ is symmetric Since $C^{(0)} = I_n$ symmetric and p.d. it follows that $C^{(1)}$ is symmetric and p.d. it foll	etric and p.s.d. nmetric and p.d.	dyadic product: dd' = $\begin{pmatrix} d_1d \\ d_2d \\ \vdots \end{pmatrix}$	$ \begin{aligned} &(\mathbf{x}_{1:\lambda}) \leq \mathbf{f}(\mathbf{x}_{2:\lambda}) \leq \ldots \leq \mathbf{f}(\mathbf{x}_{\lambda:\lambda}) \\ & \stackrel{l_1}{\underset{l_1}{d_2d_2}} \cdots \stackrel{d_1d_\mu}{\underset{l_2}{\dots}} \\ & \stackrel{i}{\underset{l_1}{\dots}} \end{aligned} \\ is positive semidefinite \\ dispersion matrix \end{aligned} $
U technische universität G. Rudolph: Comp dortmund	outational Intelligence • Winter Term 2013/14 7	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2013

CMA-ES	Lecture 11	CMA-ES	Lecture 11
variant: m = $\frac{1}{\mu} \sum_{i=1}^{\mu} x_{i:\lambda}$ mean of all <u>selected</u> parents		State-of-the-art: CMA-EA (currently many variants) → successful applications in practice	
$\begin{split} p^{(t+1)} &= (1 - \chi) \ p^{(t)} + (\chi \ (2 - \chi) \ \mu_{eff})^{1/2} \ (m^{(t)} - m^{(t-1)} \) \ / \ \sigma^{(t)} \\ p^{(0)} &= 0 \qquad \chi \in (0, 1) \\ \\ \hline C^{(0)} &= I_n \\ C^{(t+1)} &= (1 - \eta) \ C^{(t)} + \eta \ p^{(t)} \ (p^{(t)})^t \\ \\ & \rightarrow \text{ Cholesky decomposition: } \mathcal{O}(n^3) \ \text{für } C^{(t)} \end{split}$	"Evolution path"	available in WWW: • <u>http://www.lri.fr/~hansen/cmaes_inmatlab.html</u> — • <u>http://shark-project.sourceforge.net/</u> (EAlib, C+- •	C, C++, Java Fortran, Python, → Matlab, R, Scilab
technische universität G. Rudolph: Co dortmund	nputational Intelligence • Winter Term 2013/14 9	technische universität G. Rudolph: Co dortmund	mputational Intelligence • Winter Term 2013/14 10
Evolutionary Algorithms: State of the art in 1970	Lecture 11	On the notion of "convergence" (I)	Lecture 11
main arguments against EA in \mathbb{R}^n :	ouriotioolly	stochastic convergence ≠ "empirical converge	nce"
 Evolutionary Algorithms have been developed h No proofs of convergence have been derived for Sometimes the rate of convergence can be very 	them.	frequent observation: N runs on some test problem / averaging / com	parison
what can be done? \Rightarrow disable arguments! ad 1) not really an argument against EAs		⇒ this proves <mark>nothing</mark> !	
 EAs use principles of biological evolution as pool of ins to overcome traditional lines of thought to get new classes of optimization algorithms ⇒ the new ideas may be bad or good ⇒ necessity to analyze them! 	piration purposely:	 no guarantee that behavior stable in the limit! N lucky runs possible etc. 	
technische universität G. Rudolph: Co	mputational Intelligence • Winter Term 2013/14 11	technische universität G. Rudolph: Co	mputational Intelligence • Winter Term 2013/14 12

On the notion of "convergence" (II)	Lecture 11	On the notion of "convergence" (III)	Lecture 11
formal approach necessary:		Definition	
$D_k = f(X_k) - f^* \ge 0$ is a random variable		Let $D_t = f_b(\mathcal{P}(t)) - f^* \ge 0$. We say: The EA	
we shall consider the stochastic sequence D_0 , D_1 , I	D ₂ ,	(a) converges completely to the optimum	m, if $\forall \epsilon > 0$
		$\lim_{t \to \infty} \sum_{k=1}^{t} P\{D_k > \varepsilon$	$\{+\} < \infty$;
Does the stochastic sequence $(D_k)_{k\geq 0}$ converge to ()?	$i \to \infty k = 1$	
If so, then evidently "convergence to optimum"!		(b) converges almost surely or with probability 1 (w.p. 1) to the optimum, if	
		$P\{\lim_{t\to\infty}D_k=0\}$	= 1;
But: there are many modes of stochastic converg	jence!		
		(c) <i>converges in probability</i> to the optim	num, if $\forall \epsilon > 0$
ightarrow therefore here only the most frequently used		$\lim_{t\to\infty} P\{D_t > \varepsilon\} =$	= 0;
notation: $\mathcal{O}^{(t)}$ - non-ulation at time start to 0. f ($\mathcal{O}^{(t)}$	$(1) = \min\{f(x), x \in \mathcal{T}(A)\}$	(a) converges in mean to the optimum, i	f ∀ ε > 0
notation: $\mathcal{P}^{(t)}$ = population at time step t ≥ 0, $f_b(\mathcal{P}(t))$	$)) = \min\{f(\mathbf{x}): \mathbf{x} \in \mathcal{P}(\mathbf{t})\}$	$\lim_{t \to \infty} E\{D_t\} =$	
👆 👔 technische universität G. Rudolp	h: Computational Intelligence • Winter Term 2013/14	$t \rightarrow \infty$	G. Rudolph: Computational Intelligence • Winter Term 2013/14
U dortmund	13	dortmund	14
Relationships between modes of convergenc	e Lecture 11	Examples (I)	Lecture 11
Lemma		Let $(X_k)_{k\geq 1}$ be sequence of independent ra	andom variables.
• (a) \Rightarrow (b) \Rightarrow (c).		distribution: $P(X = 0) = 1$	P(Y - 1) = 1
• (d) \Rightarrow (c).		distribution: $P\{X_k = 0\} = 1 - \frac{1}{k}$	$P\{X_k \equiv 1\} \equiv \frac{1}{k}$
• If $\exists K < \infty : \forall t \ge 0 : D_t \le K$, then (d) \Leftrightarrow (c).		1. $P\{X_k > \varepsilon\} = P\{X_k = 1\} = \frac{1}{k}$	$\rightarrow 0$ for $t \rightarrow \infty$
\bullet If $(D_t)_{t \ge 0}$ stochastically independent sequence, the	n (a) ⇔ (b). ∎	10	
		\Rightarrow convergence in probability (c)	
		2. $\sum_{k=1}^{\infty} P\{X_k > \varepsilon\} = \sum_{k=1}^{\infty} P\{X_k = 1\}$	$1\} = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$
Typical modus operandi:		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sum_{k=1}^{n} k$
1. Show convergence in probablity (c). Easy! (in most cases)		\Rightarrow convergence too slow! Consequer	ntly, <u>no</u> complete convergence!
2. Show that convergence fast enough (a). This al	so implies (b).		
3. Sequence bounded from above? This implies (l).	3. Note: $\forall k \ge 0 : 0 \le X_k \le 1$. He	ence: sequence bounded with $K = 1$.
		since convergence in prob. (c) and be	ounded \Rightarrow convergence in mean (d)
	1	- ,	

technische universität dortmund

Examples (II)	Lecture 11		ad 2) no convergence proofs!	Lecture 11
let $(X_k)_{k\geq 1}$ be sequence of independent random variables.			timeline of theoretical work on converge	ence
distribution:	(a) (c)	(d)		
$P\{X_k = 0\} = 1 - \frac{1}{k}$ $P\{X_k = 1\} = \frac{1}{k}$	(-) (+)	(+)	1971 – 1975 Rechenberg / Schwefel	convergence rates for simple problems
$P\{X_k = 0\} = 1 - \frac{1}{k^2}$ $P\{X_k = 1\} = \frac{1}{k^2}$	(+) (+)	(+)	1976 – 1980 Born	convergence proof for EA with genetic load
$P\{X_k = 0\} = 1 - \frac{1}{k} \qquad P\{X_k = k\} = \frac{1}{k}$	(-) (+)	(–)	1981 – 1985 Rappl	convergence proof for (1+1)-EA in \mathbb{R}^n
$P\{X_k = 0\} = 1 - \frac{1}{k^2}$ $P\{X_k = k\} = \frac{1}{k^2}$	(+) (+)	(+)	1986 – 1989 Beyer	convergence rates for simple problems
$P\{X_k = 0\} = 1 - \frac{1}{k}$ $P\{X_k = k^2\} = \frac{1}{k}$	(-) (+)	()	all publications in <u>German</u> and for EAs i	n ℝ ⁿ
$P\{X_k = 0\} = 1 - \frac{1}{k^2}$ $P\{X_k = k^2\} = \frac{1}{k^2}$	(+) (+)	(—)	\Rightarrow results only known to German-speak	ing EA nerds!
technische universität G. Rudolph: Con dortmund	nputational Intelligence • V	Vinter Term 2013/14 17	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2013/14 18

ad 2) no	convergence	e proofs! Lecture 11	A sim
timelin	e of theoretica	al work on convergence	Theo Let D
1989	Eiben	a.s. convergence for elitist GA	S* = {
1992	Nix/Vose	Markov chain model of simple GA	P _m (x,
1993	Fogel	a.s. convergence of EP (Markov chain based)	If for
1994	Rudolph	a.s. convergence of elitist GA non-convergence of simple GA (MC based)	Rem
1994	Rudolph	a.s. convergence of non-elitist ES (based on supermartingales)	The
1996	Rudolph	conditions for convergence	Born
\Rightarrow con	vergence proc	ofs are no issue any longer!	Eiber

A simple proof of convergence (I)	Lecture 11		
Theorem:			
Let $D_k = f(x_k) - f^* $ with $k \ge 0$ be generated by (1+1)-EA,			
S^{\star} = { $x^{\star} \in S$: f(x^{\star}) = f^{\star} } is set of optimal solutions and			
$P_m(x, S^*)$ is probability to get from $x \in S$ to S^* by a single mutation operation.			
If for each $x \in S \setminus S^*$ holds $P_m(x, S^*) \ge \delta > 0$, then $D_k \to 0$ completely and in mean.			

Remark:

The proofs become simpler and simpler. Born's proof (1978) took about 10 pages. Eiben's proof (1989) took about 2 pages.

Rudolph's proof (1996) takes about 1 slide ...

A simple proof of convergence (II) Lecture 11	ad 3) Speed of Convergence Lecture 11
Proof: For the (1+1)-EA holds: $P(x, S^*) = 1$ for $x \in S^*$ due to elitist selection. Thus, it is sufficient to show that the EA reaches S* with probability 1:	Observation: Sometimes EAs have been very slow
Success in 1st iteration: $P_m(x, S^*) \ge \delta$.	Questions:
No success in 1st iteration: \leq 1 - δ .	Why is this the case?
No success in kth iteration: $\leq (1 - \delta)^k$.	Can we do something against this?
\Rightarrow at least one success in k iterations: $\geq 1 - (1 - \delta)^k \rightarrow 1$ as $k \rightarrow \infty$.	
Since P{ $D_k > \varepsilon$ } $\leq (1 - \delta)^k \rightarrow 0$ we have convergence in probablity and	\Rightarrow no speculations, instead: formal analysis!
since $\sum_{k=0}^{\infty} (1-\delta)^k < \infty$ we actually have complete convergence.	first hint in Schwefel's masters thesis (1965):
Moreover: $\forall k \ge 0$: $0 \le D_k \le D_0 < \infty$, implies convergence in mean.	observed that step size adaptation in \mathbb{R}^2 useful!
technische universität G. Rudolph: Computational Intelligence • Winter Term 2013/14 dortmund 21	G. Rudolph: Computational Intelligence • Winter Term 2013/14 dortmund 22
ad 3) Speed of Convergence Lecture 11	ad 3) Speed of Convergence Lecture 11
convergence speed <u>without</u> "step size adaptation" (pure random search)	convergence speed withoutstep size adaptation" (local uniformly distr.)

 $f(x) = \mid\mid x \mid\mid^2 = x`x \rightarrow min! \text{ where } x \in S_n(r) = \{ x \in \mathbb{R}^n : \mid\mid x \mid\mid \leq r \}$

 Z_k is uniformly distributed in $S_n(r)$

 $X_{k+1} = Z_k \text{ if } f(Z_k) < f(X_k), \text{ else } X_{k+1} = X_k$

 $\Rightarrow V_k \text{ = min } \{ \text{ f}(Z_1), \text{ f}(Z_2), \, ..., \, \text{f}(Z_k) \, \} \quad \text{best objective function value until iteration } k$

$$\mathsf{P}\{\,||\, Z\,|| \leq z\,\} \ = \ \mathsf{P}\{\, Z\,\in\, S_n(z)\,\} \ = \ \mathsf{Vol}(\,\,S_n(z)\,)\,/\,\mathsf{Vol}(\,\,S_n(r)\,) \ = \ (\, z\,/\,r\,\,)^n \ , \ 0\leq z\leq r$$

 $\mathsf{P}\{ \mid\mid Z\mid\mid^2 \leq z \;\}$ = $\mathsf{P}\{ \mid\mid Z\mid\mid \leq z^{1/2} \;\}$ = $z^{n/2} \;/\; r^n$, $0 \leq z \leq r^2$

 $P\{ V_k \le v \} = 1 - (1 - P\{ || Z ||^2 \le v \})^k = 1 - (1 - v^{n/2} / r^n)^k$

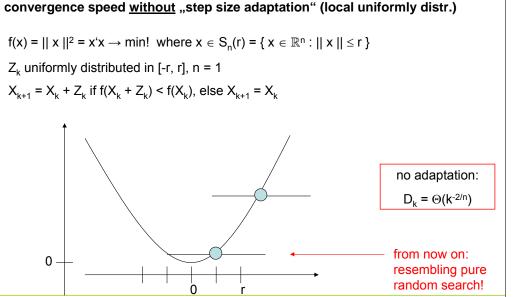
E[V_k] \rightarrow r² Γ (1 + 2/n) k^{-2/n} for large k

technische universität dortmund no adaptation:

 $D_k = \Theta(k^{-2/n})$

J technische universität dortmund

π



G. Rudolph: Computational Intelligence • Winter Term 2013/14 24

ad 3) Speed of Convergence

Lecture 11

convergence speed with "step size adaptation" (uniform distribution on $S_n(1)$)

(1,
$$\lambda$$
)-EA mit f(x) = || x ||²
|| Y_k ||² = || X_k + r_k U_k ||² = (X_k + r_k U_k)^c (X_k + r_k U_k)
= X^c_kX_k + 2r_kX^c_kU_k + r_k²U^c_kU_k
= ||X_k||² + 2r_kX^c_kU_k + r_k² ||U_k||² = ||X_k||² + 2X^c_kU_k + r_k²
= 1

note: random scalar product x'U has same distribution like ||x|| B,

where r.v. B beta-distributed with parameters (n-1)/2 on [-1, 1]. It follows, that

 $||Y_{k}||^{2} = ||X_{k}||^{2} + 2r_{k}||X_{k}|| B + r_{k}^{2}$.

Since $(1,\lambda)$ -EA selects best value out of λ trials in total, we obtain

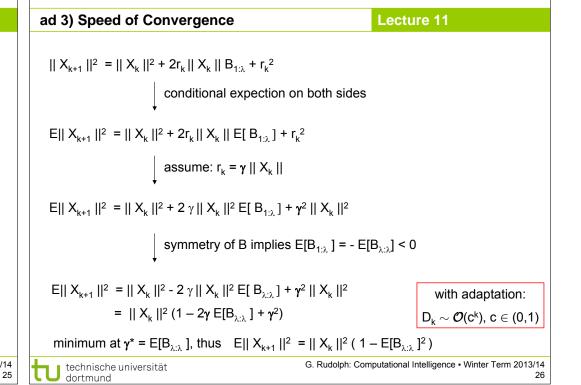
 $||X_{k+1}||^2 = ||X_k||^2 + 2r_k ||X_k|| B_{1:\lambda} + r_k^2$

ad 3) Speed of Convergence

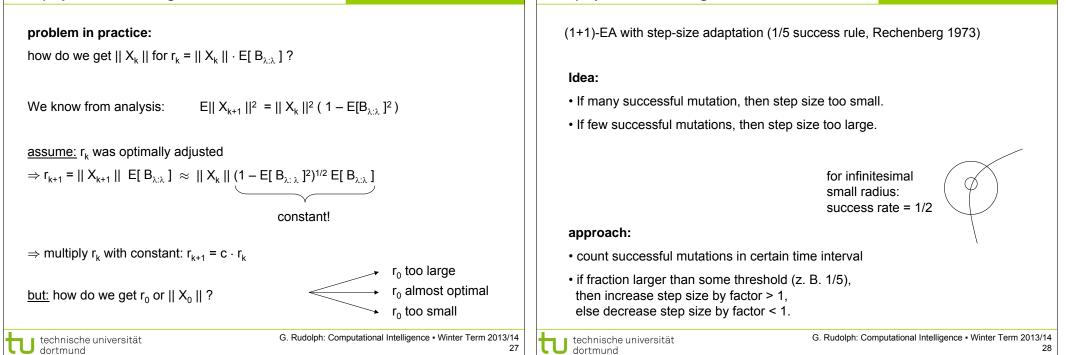
technische universität dortmund

G. Rudolph: Computational Intelligence - Winter Term 2013/14

Lecture 11



ad 3) Speed of Convergence Lecture 11 (1+1)-EA with step-size adaptation (1/5 success rule, Rechenberg 1973) Idea: · If many successful mutation, then step size too small. If few successful mutations, then step size too large. for infinitesimal small radius: success rate = 1/2approach: count successful mutations in certain time interval if fraction larger than some threshold (z. B. 1/5), then increase step size by factor > 1, else decrease step size by factor < 1.



ad 3) Sp	eed of Converge	Phoe	Lecture 11		
empirio	ally known since 1	973:			
	-	ases convergence speed dra	matically!		
·		C .			
	about 1993 EP adopted multiplicative step size adaptation (was additive)				
no proc	no proof of convergence!				
1999	Rudolph	no a.s. convergence for all	continuous functions		
2003	Jägersküppers	shows a.s. convergence for convex problems and linear convergence speed			
\Rightarrow same order of local convergence speed like gradient method!					
U technische universität G. Rudolph: Computational Intelligence • Winter Term 2013/14 U dortmund 29					