Computational Intelligence

Winter Term 2013/14

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

Towards CMA-ES

Lecture 11
claim: mutations should be aligned to isolines of problem (Schwefel 1981)

if true then covariance matrix should be inverse of Hessian matrix!

$$
\begin{aligned}
& \Rightarrow \text { assume } \mathrm{f}(\mathrm{x}) \approx 1 / 2 \mathrm{x}^{\prime} \mathrm{Ax}+\mathrm{b}^{\prime} \mathrm{x}+\mathrm{c} \quad \Rightarrow \mathrm{H}=\mathrm{A} \\
& \mathrm{Z} \sim \mathrm{~N}(0, \mathrm{C}) \text { with density } \\
& f_{Z}(x)=\frac{1}{(2 \pi)^{n / 2}|C|^{1 / 2}} \exp \left(-\frac{1}{2} x^{\prime} C^{-1} x\right)
\end{aligned}
$$

since then many proposals how to adapt the covariance matrix
\Rightarrow extreme case: use $n+1$ pairs $(x, f(x))$,
apply multiple linear regression to obtain estimators for A, b, c invert estimated matrix A! OK, but: O(n6)! (Rudolph 1992)
mutation: $\mathrm{Y}=\mathrm{X}+\mathrm{Z} \quad \mathrm{Z} \sim \mathrm{N}(0, \mathrm{C})$ multinormal distribution
maximum entropy distribution for support \mathbb{R}^{n}, given expectation vector and covariance matrix
how should we choose covariance matrix C ?
unless we have not learned something about the problem during search
\Rightarrow don't prefer any direction!
\Rightarrow covariance matrix $C=I_{n}$ (unit matrix)

G. Rudolph: Computational Intelligence • Winter Term 2013/14

Towards CMA-ES

Lecture 11
doubts: are equi-aligned isolines really optimal?

principal axis

should point into negative gradient direction!
(proof next slide)

most (effective) algorithms behave like this:
run roughly into negative gradient direction,
sooner or later we approach longest main principal axis of Hessian,
now negative gradient direction coincidences with direction to optimum, which is parallel to longest main principal axis of Hessian,
which is parallel to the longest main principal axis of the inverse covariance matrix
technische universität

Towards CMA-ES

Lecture 11
$Z=r Q u, A=B^{\prime} B, B=Q^{-1}$

$$
\begin{aligned}
f(x+r Q u) & =\frac{1}{2}(x+r Q u)^{\prime} A(x+r Q u)+b^{\prime}(x+r Q u)+c \\
& =\frac{1}{2}\left(x^{\prime} A x+2 r x^{\prime} A Q u+r^{2} u^{\prime} Q^{\prime} A Q u\right)+b^{\prime} x+r b^{\prime} Q u+c \\
& =f(x)+r x^{\prime} A Q u+r b^{\prime} Q u+\frac{1}{2} r^{2} u^{\prime} Q^{\prime} A Q u \\
& =f(x)+r\left(A x+b+\frac{r}{2} A Q u\right)^{\prime} Q u \\
& =f(x)+r\left(\nabla f(x)+\frac{r}{2} A Q u\right)^{\prime} Q u \\
& =f(x)+r \nabla f(x)^{\prime} Q u+\frac{r^{2}}{2} u^{\prime} Q^{\prime} A Q u \\
& =f(x)+r \nabla f(x)^{\prime} Q u+\frac{r^{2}}{2}
\end{aligned}
$$

if Qu were deterministic ...
$\Rightarrow \operatorname{set} Q u=-\nabla f(x) \quad$ (direction of steepest descent)

\square| technische universität |
| :--- |
| dortmund |\quad G. Rudolph: Computational Intelligence $\boldsymbol{~}$ Winter Term 2013/14 5

technische universität
dortmund
G. Rudolph: Computational Intelligence • Winter Term 2013114

Towards CMA-ES

Lecture 11

Theorem

A quadratic matrix $\mathrm{C}^{(k)}$ is symmetric and positive definite for all $k \geq 0$,
if it is built via the iterative formula $C^{(k+1)}=\alpha_{k} \mathbf{C}^{(k)}+\beta_{k} \mathbf{v}_{\mathbf{k}} \mathbf{v}^{\mathbf{k}}$
where $C^{(0)}=I_{n}, v_{k} \neq 0, \alpha_{k}>0$ and liminf $\beta_{k}>0$.

Proof:

If $v \neq 0$, then matrix $V=v v^{\prime}$ is symmetric and positive semidefinite, since

- as per definition of the dyadic product $v_{i j}=v_{i} \cdot v_{j}=v_{j} \cdot v_{i}=v_{j i}$ for all i, j and
- for all $x \in \mathbb{R}^{n}: x^{\prime}\left(v v^{\prime}\right) x=\left(x^{\prime} v\right) \cdot\left(v^{\prime} x\right)=\left(x^{\prime} v\right)^{2} \geq 0$.

Thus, the sequence of matrices $v_{k} v_{k}^{\prime}$ is symmetric and p.s.d. for $k \geq 0$. Owing to the previous lemma matrix $C^{(k+1)}$ is symmetric and p.d., if $C^{(k)}$ is symmetric as well as p.d. and matrix $v_{k} v_{k}^{\prime}$ is symmetric and p.s.d Since $C^{(0)}=I_{n}$ symmetric and p.d. it follows that $C^{(1)}$ is symmetric and p.d. Repetition of these arguments leads to the statement of the theorem.

Towards CMA-ES

Lecture 11

Apart from (inefficient) regression, how can we get matrix elements of Q ?

\Rightarrow iteratively: $\quad C^{(k+1)}=$ update $\left(C^{(k)}\right.$, Population $\left.{ }^{(k)}\right)$
basic constraint: $C^{(k)}$ must be positive definite (p.d.) and symmetric for all $k \geq 0$, otherwise Cholesky decomposition impossible: C = Q‘Q

Lemma

Let A and B be quadratic matrices and $\alpha, \beta>0$.
a) A, B symmetric $\Rightarrow \alpha A+\beta B$ symmetric.
b) A positive definite and B positive semidefinite $\Rightarrow \alpha A+\beta B$ positive definite

Proof:
ad a) $C=\alpha A+\beta B$ symmetric, since $c_{i j}=\alpha a_{i j}+\beta b_{i j}=\alpha a_{j i}+\beta b_{j i}=c_{j i}$
ad b) $\forall x \in \mathbb{R}^{n} \backslash\{0\}: x^{\prime}(\alpha A+\beta B) x=\underbrace{\alpha x^{\prime} A x}_{>0}+\underbrace{\beta x^{\prime} B x}_{\geq 0}>0$
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2013/14
dortmund

CMA-ES

Lecture 11

Idea: Don't estimate matrix C in each iteration! Instead, approximate iteratively!
(Hansen, Ostermeier et al. 1996ff.)
\rightarrow Covariance Matrix Adaptation Evolutionary Algorithm (CMA-EA)

Set initial covariance matrix to $\mathrm{C}^{(0)}=\mathrm{I}_{\mathrm{n}}$

$$
\mathrm{C}^{(\mathrm{t}+1)}=(1-\eta) \mathrm{C}^{(\mathrm{t})}+\eta \sum_{i=1}^{\mu} \mathrm{w}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}
$$

η : "learning rate" $\in(0,1)$

$$
\begin{array}{ll}
\mathrm{m}=\frac{1}{\mu} \sum_{i=1}^{\mu} x_{i: \lambda} & \text { mean of all selected parents } \\
\mathrm{d}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}: \lambda}-\mathrm{m}\right) / \sigma & \text { sorting: } \mathrm{f}\left(\mathrm{x}_{1: \lambda}\right) \leq \mathrm{f}\left(\mathrm{x}_{2: \lambda}\right) \leq \ldots \leq \mathrm{f}\left(\mathrm{x}_{\lambda: \lambda}\right)
\end{array}
$$

dyadic product: dd" =
\(\left(\begin{array}{cccc}d_{1} d_{1} \& d_{1} d_{2} \& \cdots \& d_{1} d_{\mu}

d_{2} d_{1} \& d_{2} d_{2} \& \cdots \& d_{2} d_{\mu}

\vdots \& \& \& \vdots

d_{\mu} d_{1} \& d_{\mu} d_{2} \& \cdots \& d_{\mu} d_{\mu}\end{array}\right) \quad\)| is positive semidefinite |
| :--- |
| dispersion matrix |

variant:

$\mathrm{m}=\frac{1}{\mu} \sum_{i=1}^{\mu} x_{i: \lambda} \quad$ mean of all selected parents
$p^{(t+1)}=(1-\chi) p^{(t)}+\left(\chi(2-\chi) \mu_{\text {eff }}\right)^{1 / 2}\left(m^{(t)}-m^{(t-1)}\right) / \sigma^{(t)} \quad$ "Evolution path"
$p^{(0)}=0 \quad \chi \in(0,1)$
$C^{(0)}=I_{n}$
$C^{(t+1)}=(1-\eta) C^{(t)}+\eta p^{(t)}\left(p^{(t)}\right)^{\star}$
complexity: $\mathcal{O}\left(\mathrm{n}^{2}\right)$
\rightarrow Cholesky decomposition: $\mathcal{O}\left(\mathrm{n}^{3}\right)$ für $\mathrm{C}^{(t)}$
| technische universität
G. Rudolph: Computational Intelligence • Winter Term 2013/14
dortmund

Evolutionary Algorithms: State of the art in 1970 Lecture 11

main arguments against $E A$ in \mathbb{R}^{n} :

1. Evolutionary Algorithms have been developed heuristically.
2. No proofs of convergence have been derived for them.
3. Sometimes the rate of convergence can be very slow.
what can be done? $\quad \Rightarrow$ disable arguments!
ad 1) not really an argument against EAs ...
EAs use principles of biological evolution as pool of inspiration purposely:

- to overcome traditional lines of thought
- to get new classes of optimization algorithms

```
=> the new ideas may be bad or good
=> necessity to analyze them!
```

State-of-the-art: CMA-EA (currently many variants)
\rightarrow successful applications in practice

- http://shark-project.sourceforge.net/ (EAlib, C++)
-

technische universität
G. Rudolph: Computational Intelligence • Winter Term 2013/14
dortmund

On the notion of "convergence" (I)
Lecture 11
stochastic convergence \neq "empirical convergence"
frequent observation:
N runs on some test problem / averaging / comparison
\Rightarrow this proves nothing!

- no guarantee that behavior stable in the limit!
- N lucky runs possible
- etc.
formal approach necessary:
$D_{k}=\left|f\left(X_{k}\right)-f^{*}\right| \geq 0 \quad$ is a random variable
we shall consider the stochastic sequence $D_{0}, D_{1}, D_{2}, \ldots$

Does the stochastic sequence $\left(D_{k}\right)_{k \geq 0}$ converge to 0 ?
If so, then evidently „convergence to optimum"!

But: there are many modes of stochastic convergence!
\rightarrow therefore here only the most frequently used ...
notation: $\mathcal{P}^{(\mathrm{t})}=$ population at time step $\mathrm{t} \geq 0, \mathrm{f}_{\mathrm{b}}(\mathcal{P}(\mathrm{t}))=\min \{\mathrm{f}(\mathrm{x}): \mathrm{x} \in \mathcal{P}(\mathrm{t})\}$
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2013/14
dortmund

Relationships between modes of convergence

Lecture 11

Lemma

- $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c})$.
- (d) \Rightarrow (c).
- If $\exists K<\infty: \forall t \geq 0: D_{t} \leq K$, then (d) \Leftrightarrow (c).
- If $\left(D_{t}\right)_{t \geq 0}$ stochastically independent sequence, then $(a) \Leftrightarrow(b)$.

Typical modus operandi:

1. Show convergence in probablity (c). Easy! (in most cases)
2. Show that convergence fast enough (a). This also implies (b).
3. Sequence bounded from above? This implies (d).

On the notion of "convergence" (III)

Lecture 11

Definition

Let $D_{t}=\left|f_{b}(\mathcal{P}(t))-f^{*}\right| \geq 0$. We say: The EA
(a) converges completely to the optimum, if $\forall \varepsilon>0$

$$
\lim _{t \rightarrow \infty} \sum_{k=1}^{t} P\left\{D_{k}>\varepsilon\right\}<\infty
$$

(b) converges almost surely or with probability 1 (w.p. 1) to the optimum, if

$$
P\left\{\lim _{t \rightarrow \infty} D_{k}=0\right\}=1 ;
$$

(c) converges in probability to the optimum, if $\forall \varepsilon>0$

$$
\lim _{t \rightarrow \infty} P\left\{D_{t}>\varepsilon\right\}=0
$$

(a) converges in mean to the optimum, if $\forall \varepsilon>0$

$$
\lim _{t \rightarrow \infty} E\left\{D_{t}\right\}=0
$$

technische universität G. Rudolph: Computational Intelligence • Winter Term 2013/14 dortmund

Examples (I)

Lecture 11

Let $\left(X_{k}\right)_{k \geq 1}$ be sequence of independent random variables.

$$
\text { distribution: } \quad P\left\{X_{k}=0\right\}=1-\frac{1}{k} \quad P\left\{X_{k}=1\right\}=\frac{1}{k}
$$

1. $P\left\{X_{k}>\varepsilon\right\}=P\left\{X_{k}=1\right\}=\frac{1}{k} \rightarrow 0$ for $t \rightarrow \infty$
\Rightarrow convergence in probability (c)
2. $\sum_{k=1}^{\infty} P\left\{X_{k}>\varepsilon\right\}=\sum_{k=1}^{\infty} P\left\{X_{k}=1\right\}=\sum_{k=1}^{\infty} \frac{1}{k}=\infty$
\Rightarrow convergence too slow! Consequently, no complete convergence!
3. Note: $\forall k \geq 0: 0 \leq X_{k} \leq 1$. Hence: sequence bounded with $\mathrm{K}=1$. since convergence in prob. (c) and bounded \Rightarrow convergence in mean (d)

Examples (II)

let $\left(X_{k}\right)_{k \geq 1}$ be sequence of independent random variables.

distribution:		(a)	(c)	(d)
$P\left\{X_{k}=0\right\}=1-\frac{1}{k}$	$P\left\{X_{k}=1\right\}=\frac{1}{k}$	$(-)$	$(+)$	$(+)$
$P\left\{X_{k}=0\right\}=1-\frac{1}{k^{2}}$	$P\left\{X_{k}=1\right\}=\frac{1}{k^{2}}$	$(+)$	$(+)$	$(+)$
$P\left\{X_{k}=0\right\}=1-\frac{1}{k}$	$P\left\{X_{k}=k\right\}=\frac{1}{k}$	$(-)$	$(+)$	$(-)$
$P\left\{X_{k}=0\right\}=1-\frac{1}{k^{2}}$	$P\left\{X_{k}=k\right\}=\frac{1}{k^{2}}$	$(+)$	$(+)$	$(+)$
$P\left\{X_{k}=0\right\}=1-\frac{1}{k}$	$P\left\{X_{k}=k^{2}\right\}=\frac{1}{k}$	$(-)$	$(+)$	$(-)$
$P\left\{X_{k}=0\right\}=1-\frac{1}{k^{2}}$	$P\left\{X_{k}=k^{2}\right\}=\frac{1}{k^{2}}$	$(+)$	$(+)$	$(-)$

technische universität
G. Rudolph: Computational Intelligence • Winter Term 2013/14 dortmund

Lecture 11

ad 2) no convergence proofs!

timeline of theoretical work on convergence

1989	Eiben	a.s. convergence for elitist GA
1992	Nix/Vose	Markov chain model of simple GA
1993	Fogel	a.s. convergence of EP (Markov chain based)
1994	Rudolph	a.s. convergence of elitist GA non-convergence of simple GA (MC based)
1994	Rudolph	a.s. convergence of non-elitist ES (based on supermartingales)
1996	Rudolph	conditions for convergence

\Rightarrow convergence proofs are no issue any longer!

ad 2) no convergence proofs!

Lecture 11

timeline of theoretical work on convergence

$1971-1975$	Rechenberg / Schwefel	convergence rates for simple problems
$1976-1980$	Born	convergence proof for EA with genetic load
$1981-1985$	Rappl	convergence proof for (1+1)-EA in $\mathbb{R}^{\text {n }}$
$1986-1989$	Beyer	convergence rates for simple problems

all publications in German and for EAs in \mathbb{R}^{n}
\Rightarrow results only known to German-speaking EA nerds!
Tu technische universität G. Rudolph: Computational Intelligence • Winter Term 2013/14 dortmund

A simple proof of convergence (I)

Lecture 11

Theorem:

Let $D_{k}=\left|f\left(x_{k}\right)-f^{*}\right|$ with $k \geq 0$ be generated by (1+1)-EA,
$S^{*}=\left\{x^{*} \in S: f\left(x^{*}\right)=f^{*}\right\}$ is set of optimal solutions and
$P_{m}\left(x, S^{*}\right)$ is probability to get from $x \in S$ to S^{*} by a single mutation operation.
If for each $x \in S \backslash S^{*}$ holds $P_{m}\left(x, S^{*}\right) \geq \delta>0$, then $D_{k} \rightarrow 0$ completely and in mean.

Remark:

The proofs become simpler and simpler.
Born's proof (1978) took about 10 pages.
Eiben's proof (1989) took about 2 pages.
Rudolph's proof (1996) takes about 1 slide ...

A simple proof of convergence (II)

Lecture 11

Proof:

For the (1+1)-EA holds: $\mathrm{P}\left(\mathrm{x}, \mathrm{S}^{*}\right)=1$ for $\mathrm{x} \in \mathrm{S}^{*}$ due to elitist selection.
Thus, it is sufficient to show that the EA reaches S^{*} with probability 1 :

Success in 1st iteration: $\mathrm{P}_{\mathrm{m}}\left(\mathrm{x}, \mathrm{S}^{*}\right) \geq \delta$.
No success in 1st iteration: $\leq 1-\delta$.
No success in kth iteration: $\leq(1-\delta)^{\mathrm{k}}$.
\Rightarrow at least one success in k iterations: $\geq 1-(1-\delta)^{\mathrm{k}} \rightarrow 1$ as $\mathrm{k} \rightarrow \infty$.

Since $P\left\{D_{k}>\varepsilon\right\} \leq(1-\delta)^{k} \rightarrow 0$ we have convergence in probablity and since $\sum_{k=0}^{\infty}(1-\delta)^{k}<\infty \quad$ we actually have complete convergence.
Moreover: $\forall \mathrm{k} \geq 0$: $0 \leq \mathrm{D}_{\mathrm{k}} \leq \mathrm{D}_{0}<\infty$, implies convergence in mean.

technische universität

 dortmundG. Rudolph: Computational Intelligence • Winter Term 2013/14

ad 3) Speed of Convergence

Lecture 11

convergence speed without "step size adaptation" (pure random search)

$$
\begin{aligned}
& f(x)=\|x\|^{2}=x^{\prime} x \rightarrow \min !\text { where } x \in S_{n}(r)=\left\{x \in \mathbb{R}^{n}:\|x\| \leq r\right\} \\
& Z_{k} \text { is uniformly distributed in } S_{n}(r) \\
& X_{k+1}=Z_{k} \text { if } f\left(Z_{k}\right)<f\left(X_{k}\right) \text {, else } X_{k+1}=X_{k} \\
& \Rightarrow V_{k}=\min \left\{f\left(Z_{1}\right), f\left(Z_{2}\right), \ldots, f\left(Z_{k}\right)\right\} \text { best objective function value until iteration } k \\
& P\{\|Z\| \leq z\}=P\left\{Z \in S_{n}(z)\right\}=\operatorname{Vol}\left(S_{n}(z)\right) / \operatorname{Vol}\left(S_{n}(r)\right)=(z / r)^{n}, 0 \leq z \leq r \\
& P\left\{\|Z\|^{2} \leq z\right\}=P\left\{\|Z\| \leq z^{1 / 2}\right\}=z^{n / 2} / r^{n}, 0 \leq z \leq r^{2} \\
& P\left\{V_{k} \leq v\right\}=1-\left(1-P\left\{\|Z\|^{2} \leq v\right\}\right)^{k}=1-\left(1-v^{n / 2} / r^{n}\right)^{k} \quad \begin{array}{c}
\text { no adaptation: } \\
D_{k}=\Theta\left(k^{-2 / n}\right)
\end{array} \\
& E\left[V_{k}\right] \rightarrow r^{2} \Gamma(1+2 / n) k^{-2 / n} \text { for large } k
\end{aligned}
$$

ad 3) Speed of Convergence

Lecture 11

Observation:

Sometimes EAs have been very slow ...

Questions:

Why is this the case?
Can we do something against this?
\Rightarrow no speculations, instead: formal analysis!
first hint in Schwefel's masters thesis (1965):
observed that step size adaptation in \mathbb{R}^{2} useful!
\square technische universität
G. Rudolph: Computational Intelligence • Winter Term 2013/14

ad 3) Speed of Convergence

Lecture 11

convergence speed without „step size adaptation" (local uniformly distr.)

$f(x)=\|x\|^{2}=x^{\prime} x \rightarrow \min$! where $x \in S_{n}(r)=\left\{x \in \mathbb{R}^{n}:\|x\| \leq r\right\}$
Z_{k} uniformly distributed in $[-r, r], n=1$
$X_{k+1}=X_{k}+Z_{k}$ if $f\left(X_{k}+Z_{k}\right)<f\left(X_{k}\right)$, else $X_{k+1}=X_{k}$

ad 3) Speed of Convergence

Lecture 11
convergence speed with "step size adaptation" (uniform distribution on $S_{n}(1)$)
(1, λ)-EA mit $f(x)=\|x\|^{2}$

$$
\begin{aligned}
\left\|Y_{k}\right\|^{2} & =\left\|X_{k}+r_{k} U_{k}\right\|^{2}=\left(X_{k}+r_{k} U_{k}\right)^{\prime}\left(X_{k}+r_{k} U_{k}\right) \\
& =X_{k}^{\prime} X_{k}+2 r_{k} X_{k}^{\prime} U_{k}+r_{k}{ }^{2} U_{k}^{\prime} U_{k} \\
& =\left\|X_{k}\right\|^{2}+2 r_{k} X_{k} U_{k}+r_{k}^{2} \underbrace{\left\|U_{k}\right\|^{2}}_{=1}=\left\|X_{k}\right\|^{2}+2 X_{k}^{\prime} U_{k}+r_{k}^{2}
\end{aligned}
$$

note: random scalar product $x^{‘} U$ has same distribution like $\|x\| B$,
where r.v. B beta-distributed with parameters $(n-1) / 2$ on $[-1,1]$. It follows, that
$\left\|Y_{k}\right\|^{2}=\left\|X_{k}\right\|^{2}+2 r_{k}\left\|X_{k}\right\| B+r_{k}{ }^{2}$.
Since $(1, \lambda)$-EA selects best value out of λ trials in total, we obtain
$\left\|X_{k+1}\right\|^{2}=\left\|X_{k}\right\|^{2}+2 r_{k}\left\|X_{k}\right\| B_{1: \lambda}+r_{k}{ }^{2}$
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2013/14
dortmund

ad 3) Speed of Convergence

Lecture 11

problem in practice:

how do we get $\left\|X_{k}\right\|$ for $r_{k}=\left\|X_{k}\right\| \cdot E\left[B_{\lambda: \lambda}\right]$?

We know from analysis:
$E\left\|X_{k+1}\right\|^{2}=\left\|X_{k}\right\|^{2}\left(1-E\left[B_{\lambda: \lambda}\right]^{2}\right)$
assume: r_{k} was optimally adjusted

$$
\Rightarrow r_{k+1}=\left\|X_{k+1}\right\| E\left[B_{\lambda: \lambda}\right] \approx\left\|X_{k}\right\| \underbrace{\left(1-E\left[B_{\lambda: \lambda}\right]^{2}\right)^{1 / 2} E\left[B_{\lambda: \lambda}\right]}
$$

\Rightarrow multiply r_{k} with constant: $\mathrm{r}_{\mathrm{k}+1}=\mathrm{c} \cdot \mathrm{r}_{\mathrm{k}}$
but: how do we get r_{0} or $\left|\mid X_{0} \|\right.$?

constant!

ad 3) Speed of Convergence

Lecture 11

$$
\left\|X_{k+1}\right\|^{2}=\left\|X_{k}\right\|^{2}+2 r_{k}\left\|X_{k}\right\| B_{1: \lambda}+r_{k}^{2}
$$

$$
\downarrow \text { conditional expection on both sides }
$$

$E\left\|X_{k+1}\right\|^{2}=\left\|X_{k}\right\|^{2}+2 r_{k}\left\|X_{k}\right\| E\left[B_{1: \lambda}\right]+r_{k}^{2}$
\downarrow assume: $r_{k}=\gamma\left\|X_{k}\right\|$
$E\left\|X_{k+1}\right\|^{2}=\left\|X_{k}\right\|^{2}+2 \gamma\left\|X_{k}\right\|^{2} E\left[B_{1: \lambda}\right]+\gamma^{2}\left\|X_{k}\right\|^{2}$

$$
\text { symmetry of } \mathrm{B} \text { implies } \mathrm{E}\left[\mathrm{~B}_{1: \lambda}\right]=-\mathrm{E}\left[\mathrm{~B}_{\lambda: \lambda}\right]<0
$$

$E\left\|X_{k+1}\right\|^{2}=\left\|X_{k}\right\|^{2}-2 \gamma\left\|X_{k}\right\|^{2} E\left[B_{\lambda: \lambda}\right]+\gamma^{2}\left\|X_{k}\right\|^{2}$
with adaptation:
$=\left\|X_{k}\right\|^{2}\left(1-2 \gamma E\left[B_{\lambda: \lambda}\right]+\gamma^{2}\right)$
$\mathrm{D}_{\mathrm{k}} \sim \mathcal{O}\left(\mathrm{c}^{\mathrm{k}}\right), \mathrm{c} \in(0,1)$
minimum at $\gamma^{*}=\mathrm{E}\left[\mathrm{B}_{\lambda: \lambda}\right]$, thus $\mathrm{E}\left\|\mathrm{X}_{\mathrm{k}+1}\right\|^{2}=\left\|\mathrm{X}_{\mathrm{k}}\right\|^{2}\left(1-\mathrm{E}\left[\mathrm{B}_{\lambda: \lambda}\right]^{2}\right)$
U technische universität G. Rudolph: Computational Intelligence • Winter Term 2013/14

ad 3) Speed of Convergence

Lecture 11

(1+1)-EA with step-size adaptation (1/5 success rule, Rechenberg 1973)

Idea:

- If many successful mutation, then step size too small.
- If few successful mutations, then step size too large.
for infinitesimal small radius: success rate $=1 / 2$

approach:

- count successful mutations in certain time interval
- if fraction larger than some threshold (z. B. 1/5),
then increase step size by factor >1,
else decrease step size by factor <1.
empirically known since 1973:
step size adaptation increases convergence speed dramatically!
about 1993 EP adopted multiplicative step size adaptation (was additive)
no proof of convergence!

1999 Rudolph no a.s. convergence for all continuous functions
2003 Jägersküppers shows a.s. convergence for convex problems and linear convergence speed
\Rightarrow same order of local convergence speed like gradient method!
dortmund

