Computational Intelligence

Winter Term 2017/18

- Organization (Lectures / Tutorials)
- Overview Cl
- Introduction to ANN
- McCulloch Pitts Neuron (MCP)
- Minsky I Papert Perceptron (MPP)

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

Organizational Issues Lecture 01	Organizational Issues	Lecture 01
Who are you? either studying "Automation and Robotics" (Master of Science) Module "Optimization" or studying "Informatik' - BSc-Modul "Einführung in die Computational Intelligence" - Hauptdiplom-Wahlvorlesung (SPG 6 \& 7) or ... let me know!	Who am I? Günter Rudolph Fakultät für Informatik, LS 11 Guenter.Rudolph@tu-dortmund.de OH-14, R. 232 office hours: Tuesday, 10:30-11:30am and by appointment	\leftarrow best way to contact me \leftarrow if you want to see me
\square technische universität $\begin{aligned} & \text { dortmund }\end{aligned} \quad$ G. Rudolph: Computational Intelligence • Winter Term 2017/18	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2017/18

```
Lecture 01
```


Organizational Issues

Lecture 01

Exams

Effective since winter term 2014/15: written exam (not oral)

- Informatik, Diplom: Leistungsnachweis \rightarrow Übungsschein
- Informatik, Diplom: Fachprüfung
- Informatik, Bachelor: Module
\rightarrow written exam (90 min)
\rightarrow written exam (90 min)
- Automation \& Robotics, Master: Module
\rightarrow written exam (90 min)
mandatory for registration to written exam: must pass tutorial
Sides see web page
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2017/18
dortmund

Prerequisites

Lecture 01

Knowledge about

- mathematics,
- programming,
- logic
is helpful.

But what if something is unknown to me?

- covered in the lecture
- pointers to literature
... and don't hesitate to ask!
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2017/18

Overview "Computational Intelligence" Lecture 01

What is Cl ?
\Rightarrow umbrella term for computational methods inspired by nature

- artifical neural networks
- evolutionary algorithms
- fuzzy systems
- swarm intelligence
- artificial immune systems
- growth processes in trees
-...

```
backbone
```

new developments
dortmund

- term „computational intelligence" made popular by John Bezdek (FL, USA)
- originally intended as a demarcation line
\Rightarrow establish border between artificial and computational intelligence
- nowadays: blurring border

our goals:

1. know what Cl methods are good for!
2. know when refrain from Cl methods!
3. know why they work at all!
4. know how to apply and adjust Cl methods to your problem!
\square technische universität \quad G. Rudolph: Computational Intelligence $\boldsymbol{\bullet}$ Winter Term 2017/18

Introduction to Artificial Neural Networks	Lecture 01
Abstraction	synapse signal output

Introduction to Artificial Neural Networks

Lecture 01

Biological Prototype

- Neuron
- Information gathering
(D)
- Information processing
- Information propagation (A/S)

> human being: 10^{12} neurons electricity in mV range speed: $120 \mathrm{~m} / \mathrm{s}$

- technische universität
G. Rudolph: Computational Intelligence • Winter Term 2017/18
technische
dortmund

Introduction to Artificial Neural Networks
Lecture 01

Model

McCulloch-Pitts-Neuron 1943:

$$
x_{i} \in\{0,1\}=: \mathbb{B}
$$

$$
\mathrm{f}: \mathbb{B}^{\mathrm{n}} \rightarrow \mathbb{B}
$$

1943: Warren McCulloch / Walter Pitts

- description of neurological networks
\rightarrow modell: McCulloch-Pitts-Neuron (MCP)
- basic idea:
- neuron is either active or inactive
- skills result from connecting neurons
- considered static networks
(i.e. connections had been constructed and not learnt)

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2017/18
dortmund

Introduction to Artificial Neural Networks
Lecture 01

McCulloch-Pitts-Neuron

n binary input signals x_{1}, \ldots, x_{n}
threshold $\theta>0$

NOT

in addition: m binary inhibitory signals $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}$
$\tilde{f}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)=f\left(x_{1}, \ldots, x_{n}\right) \cdot \prod_{j=1}^{m}\left(1-y_{j}\right)$

- if at least one $y_{j}=1$, then output $=0$
- otherwise:
- sum of inputs \geq threshold, then output $=1$
else output = 0

Proof: (by construction)
Every boolean function F can be transformed in disjunctive normal form
$\Rightarrow 2$ layers (AND - OR)

1. Every clause gets a decoding neuron with $\theta=\mathrm{n}$ \Rightarrow output = 1 only if clause satisfied (AND gate)
2. All outputs of decoding neurons are inputs of a neuron with $\theta=1$ (OR gate)

Theorem:

Weighted and unweighted MCP-nets are equivalent for weights $\in Q^{+}$.

Proof:

„ \Rightarrow

$$
\text { Let } \sum_{i=1}^{n} \frac{a_{i}}{b_{i}} x_{i} \geq \frac{a_{0}}{b_{0}} \text { with } a_{i}, b_{i} \in \mathrm{~N}
$$

Multiplication with $\prod_{i=0}^{n} b_{i}$ yields inequality with coefficients in \mathbb{N}
Duplicate input x_{i}, such that we get $a_{i} b_{1} b_{2} \cdots b_{i-1} b_{i+1} \cdots b_{n}$ inputs.
Threshold $\theta=a_{0} b_{1} \cdots b_{n}$
„气"
Set all weights to 1.

Introduction to Artificial Neural Networks
 ecture 01

Generalization: inputs with weights

$$
\begin{aligned}
& x_{1} \xrightarrow[0,4]{0,2} \text { fires } 1 \text { if } 0,2 x_{1}+0,4 x_{2}+0,3 x_{3} \geq 0,7 \quad \mid \cdot 10 \\
& x_{2} \frac{0,4}{0,3} \geq 0,7- \\
& x_{3} \\
& 2 x_{1}+4 x_{2}+3 x_{3} \geq 7 \\
& \Downarrow \\
& \text { duplicate inputs! } \\
& \Rightarrow \text { equivalent! } \\
& \text { ? }
\end{aligned}
$$

Introduction to Artificial Neural Networks

Lecture 01

Conclusion for MCP nets

+ feed-forward: able to compute any Boolean function
+ recursive: able to simulate DFA
- very similar to conventional logical circuits
- difficult to construct
- no good learning algorithm available

Perceptron (Rosenblatt 1958)

\rightarrow complex model \rightarrow reduced by Minsky \& Papert to what is „necessary"
\rightarrow Minsky-Papert perceptron (MPP), $1969 \rightarrow$ essential difference: $x \in[0,1] \subset R$

What can a single MPP do?

$w_{1} x_{1}+w_{2} x_{2} \geq \theta \xrightarrow[\mathrm{N}]{\mathrm{Y}} 0$
isolation of x_{2} yields:

$$
x_{2} \geq \frac{\theta}{w_{2}}-\frac{w_{1}}{w_{2}} x_{1} \xlongequal[\mathrm{~N}]{\mathrm{N}} 0
$$

Example:

$$
\begin{aligned}
& 0,9 x_{1}+0,8 x_{2} \geq 0,6 \\
& \Leftrightarrow x_{2} \geq \frac{3}{4}-\frac{9}{8} x_{1}
\end{aligned}
$$

separating line
separates R^{2}
in 2 classes
technische universität
technische
dortmund
G. Rudolph: Computational Intelligence • Winter Term 2017/18

Introduction to Artificial Neural Networks
Lecture 01

1969: Marvin Minsky I Seymor Papert

- book Perceptrons \rightarrow analysis math. properties of perceptrons
- disillusioning result:
perceptions fail to solve a number of trivial problems!
- XOR-Problem
- Parity-Problem
- Connectivity-Problem
- „conclusion": All artificial neurons have this kind of weakness! \Rightarrow research in this field is a scientific dead end!
- consequence: research funding for ANN cut down extremely (~ 15 years)

Introduction to Artificial Neural Networks

Lecture 01

\rightarrow MPP at least as powerful as MCP neuron!

$$
\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2} \geq \theta
$$

contradiction!
G. Rudolph: Computational Intelligence • Winter Term 2017/18
technische universität dortmund

Introduction to Artificial Neural Networks

Lecture 01

how to leave the „dead end":

1. Multilayer Perceptrons:

\Rightarrow realizes XOR
2. Nonlinear separating functions:
XOR $\quad g\left(x_{1}, x_{2}\right)=2 x_{1}+2 x_{2}-4 x_{1} x_{2}-1$ with $\quad \theta=0$

$g(0,0)=-1$
$g(0,1)=+1$
$g(1,0)=+1$
$g(1,1)=-1$

How to obtain weights w_{i} and threshold θ ?

as yet: by construction
example: NAND-gate

X_{1}	X_{2}	NAND
0	0	1
0	1	1
1	0	1
1	1	0

$$
\begin{aligned}
& \Rightarrow 0 \geq \theta \\
& \Rightarrow \mathrm{w}_{2} \geq \theta \\
& \Rightarrow \mathrm{w}_{1} \geq \theta \\
& \Rightarrow \mathrm{w}_{1}+\mathrm{w}_{2}<\theta
\end{aligned}
$$

$$
\Rightarrow w_{2} \geq \theta \quad \quad \quad \text { requires solution of a system of }
$$

$$
\text { linear inequalities }(\in P)
$$

$$
\text { (e.g.: } \left.w_{1}=w_{2}=-2, \theta=-3\right)
$$

now: by „learning" / training

threshold as a weight: $\mathrm{w}=\left(\theta, \mathrm{w}_{1}, \mathrm{w}_{2}\right)^{\text {c }}$

$$
\begin{aligned}
& P=\left\{\binom{1}{1},\binom{1}{-1},\binom{0}{-1}\right\} \\
& N=\left\{\binom{-1}{-1},\binom{-1}{1},\binom{0}{1}\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
1 & -\theta \\
x_{1} & - \\
x_{2} & \frac{w_{1}}{W_{2}}
\end{array} \geq 0-
$$

$$
P=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

$$
N=\left\{\left(\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\}
$$

suppose initial vector of weights is
$w^{(0)}=(1,-1,1)$

Introduction to Artificial Neural Networks

Lecture 01

Perceptron Learning

Assumption: test examples with correct I/O behavior available

Principle:

(1) choose initial weights in arbitrary manner
(2) feed in test pattern
(3) if output of perceptron wrong, then change weights
(4) goto (2) until correct output for all test paterns
graphically:
\rightarrow translation and rotation of separating lines
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2017/18 dortmund

Introduction to Artificial Neural Networks Lecture 01

Perceptron Learning

$\mathrm{P}:$ set of positive examples	\rightarrow output 1
$\mathrm{~N}:$ set of negative examples	\rightarrow output 0
threshold θ integrated in weights	

1. choose w_{0} at random, $t=0$
2. choose arbitrary $x \in P \cup N$
3. if $x \in P$ and $w_{t}^{\prime} x>0$ then goto 2 if $x \in N$ and $w_{t}^{\prime} x \leq 0$ then goto 2
4. if $x \in P$ and $w_{t}^{\prime} x \leq 0$ then

$$
\mathrm{w}_{\mathrm{t}+1}=\mathrm{w}_{\mathrm{t}}+\mathrm{x} ; \mathrm{t++} ; \text { goto } 2
$$

$$
\text { let } w^{\prime} x \leq 0 \text {, should be }>0 \text { ! }
$$

5. if $x \in N$ and $w_{t}^{\prime} x>0$ then $\mathrm{w}_{\mathrm{t}+1}=\mathrm{w}_{\mathrm{t}}-\mathrm{x} ; \mathrm{t}++$; goto 2
stop? If I/O correct for all examples!

Introduction to Artificial Neural Networks

Lecture 01

We know what a single MPP can do.
What can be achieved with many MPPs?

Single MPP	\Rightarrow separates plane in two half planes
Many MPPs in 2 layers	\Rightarrow can identify convex sets

\Leftarrow

1. How? $\quad \Rightarrow 2$ layers!
2. Convex?

$\forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$:
$\lambda a+(1-\lambda) b \in X$
for $\lambda \in(0,1)$

Single MPP	\Rightarrow separates plane in two half planes
Many MPPs in 2 layers	\Rightarrow can identify convex sets
Many MPPs in 3 layers	\Rightarrow can identify arbitrary sets
Many MPPs in >3 layers	\Rightarrow not really necessary!

arbitrary sets:

1. partitioning of nonconvex set in several convex sets
2. two-layered subnet for each convex set
3. feed outputs of two-layered subnets in OR gate (third layer)
