

Computational Intelligence

Winter Term 2017/18

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

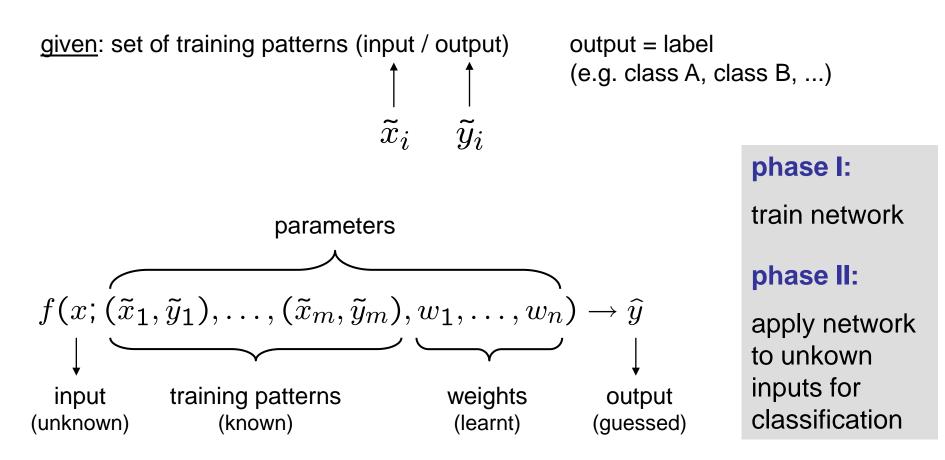
TU Dortmund

Plan for Today

- Application Fields of ANNs
 - Classification
 - Prediction
 - Function Approximation
- Recurrent MLP
 - Elman Nets
 - Jordan Nets
- Radial Basis Function Nets (RBF Nets)
 - Model
 - Training

Application Fields of ANNs

Classification

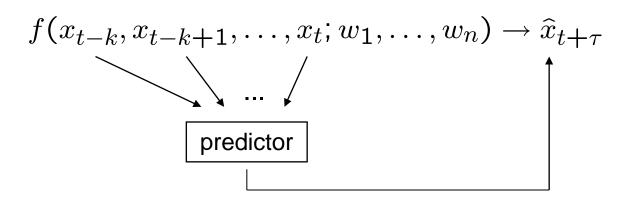


Lecture 03

Prediction of Time Series

time series $x_1, x_2, x_3, ...$ (e.g. temperatures, exchange rates, ...)

task: given a subset of historical data, predict the future



training patterns:

historical data where true output is known;

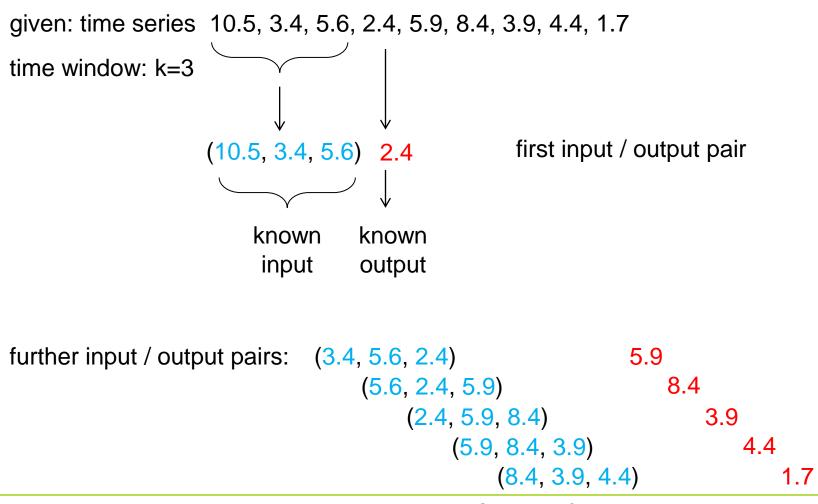
error per pattern = $(\hat{x}_{t+\tau} - x_{t+\tau})^2$

phase I: train network phase II: apply network to historical inputs for predicting <u>unkown</u> outputs

technische universität

dortmund

Prediction of Time Series: Example for Creating Training Data



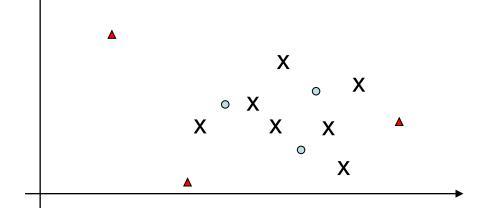
G. Rudolph: Computational Intelligence • Winter Term 2017/18

Function Approximation (the general case)

task: given training patterns (input / output), approximate unkown function

 \rightarrow should give outputs close to true unkown function for arbitrary inputs

- values between training patterns are interpolated
- values outside convex hull of training patterns are extrapolated

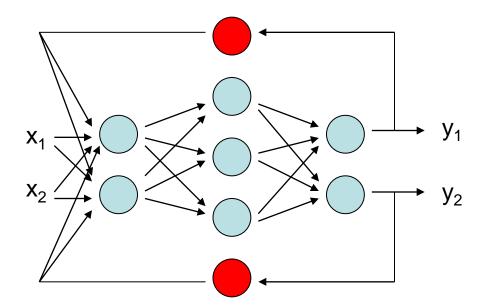


- x : input training pattern
- input pattern where output to be interpolated
- input pattern where output to be extrapolated

Jordan nets (1986)

• context neuron:

reads output from some neuron at step t and feeds value into net at step t+1



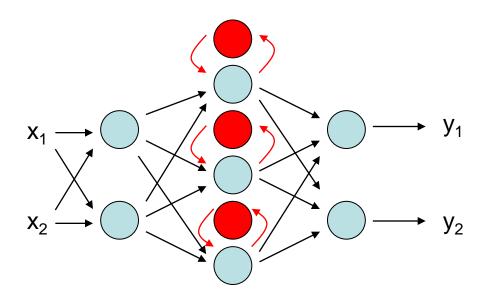
Jordan net =

MLP + context neuron for each output, context neurons fully connected to input layer

Elman nets (1990)

Elman net =

MLP + context neuron for each hidden layer neuron's output of MLP, context neurons fully connected to emitting MLP layer



Training?

- \Rightarrow unfolding in time ("loop unrolling")
- identical MLPs serially connected (finitely often)
- results in a large MLP with many hidden (inner) layers
- backpropagation may take a long time
- but reasonable if most recent past more important than layers far away

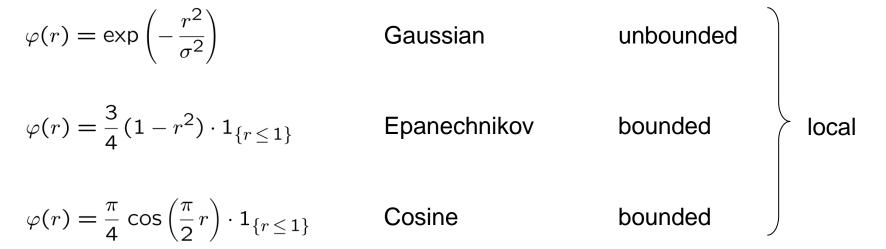
Why using backpropagation?

 \Rightarrow use *Evolutionary Algorithms* directly on recurrent MLP!

Radial Basis Function Nets (RBF Nets)		Lecture 03	
	Definition:	Definition:	
	A function $\phi:\mathbb{R}^n\to\mathbb{R}$ is termed radial basis function	RBF local iff	
	$\inf \exists \varphi : \mathbb{R} \to \mathbb{R} : \forall x \in \mathbb{R}^n : \phi(x; c) = \varphi(\ x - c\). \Box$	$\phi(\mathbf{r}) \rightarrow 0 \text{ as } \mathbf{r} \rightarrow \infty$	

typically, || x || denotes Euclidean norm of vector x

examples:

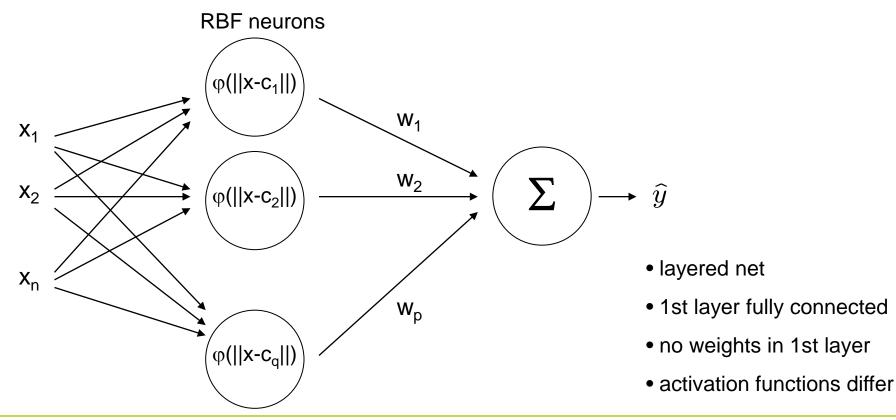


G. Rudolph: Computational Intelligence • Winter Term 2017/18 10

Definition:

A function f: $\mathbb{R}^n \to \mathbb{R}$ is termed radial basis function net (RBF net)

 $\text{iff } f(x) = w_1 \ \phi(|| \ x - c_1 \ || \) + w_2 \ \phi(|| \ x - c_2 \ || \) \ + \ldots + w_p \ \phi(|| \ x - c_q \ || \) \qquad \square$

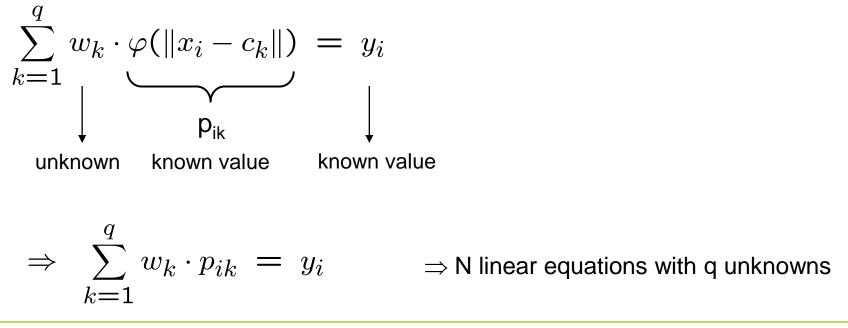


G. Rudolph: Computational Intelligence • Winter Term 2017/18

- given : N training patterns (x_i, y_i) and q RBF neurons
- find : weights $w_1, ..., w_q$ with minimal error

solution:

we know that $f(x_i) = y_i$ for i = 1, ..., N and therefore we insist that



Lecture 03

in matrix form: P w = y with $P = (p_{ik})$ and P: N x q, y: N x 1, w: q x 1,

case N = q: $w = P^{-1} y$ if P has full rank

case N < q: many solutions but of no practical relevance

case N > q: $w = P^+ y$ where P⁺ is Moore-Penrose pseudo inverse

Pw = y

P'Pw = P'y

 $(P'P)^{-1}P'P w = (P'P)^{-1}P' y$ unit matrix P+

 $| \cdot P'$ from left hand side (P' is transpose of P)

 $|\cdot (P'P)|^{-1}$ from left hand side

simplify

existence of (P'P)⁻¹ ?
numerical stability ?

Tikhonov Regularization (1963)

idea: choose $(P'P + h I_q)^{-1}$ instead of $(P'P)^{-1}$ (h > 0, I_q is q-dim. unit matrix)

excursion to linear algebra:

Def : matrix A positive semidefinite (p.s.d) iff $\forall x \in \mathbb{R}^n : x'Ax \ge 0$ Def : matrix A positive definite (p.d.) iff $\forall x \in \mathbb{R}^n \setminus \{0\} : x'Ax > 0$ Thm : matrix $A : n \times n$ regular $\Leftrightarrow \operatorname{rank}(A) = n \Leftrightarrow A^{-1}$ exists $\Leftarrow A$ is p.d.

Lemma : a, b > 0, $A, B : n \times n$, A p.d. and B p.s.d. $\Rightarrow a \cdot A + b \cdot B$ p.d.

$$\mathsf{Proof} \quad : \ \forall x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = \underbrace{a}_{>0} \cdot \underbrace{x'Ax}_{>0} + \underbrace{b}_{>0} \cdot \underbrace{x'Bx}_{>0} > 0 \qquad \qquad \mathsf{q.e.d}$$

Lemma : $P : n \times q \Rightarrow P'P$ p.s.d.

Proof : $\forall x \in \mathbb{R}^n : x'(P'P)x = (x'P') \cdot (Px) = (Px)'(Px) = \|Px\|_2^2 \ge 0$ q.e.d.

Tikhonov Regularization (1963)

 $\Rightarrow (P'P + h I_q) \text{ is p.d.} \Rightarrow (P'P + h I_q)^{-1} \text{ exists}$

question: how to justify this particular choice?

 $||Pw - y||^2 + h \cdot ||w||^2 \quad \to \min_w!$

interpretation: minimize TSSE and prefer solutions with small values!

$$\frac{d}{dw} [(Pw - y)'(Pw - y) + h \cdot w'w] = \\ \frac{d}{dw} [(w'P'Pw - w'P'y - y'Pw + y'y + h \cdot w'w] = \\ 2P'Pw - 2P'y + 2hw = 2(P'P + hI_q)w - 2P'y \stackrel{!}{=} 0 \\ \Rightarrow w^* = (P'P + hI_q)^{-1}P'y$$

 $\frac{d}{dw}[2(P'P + hI_q)w - 2P'y] = 2(P'P + hI_q) \text{ is p.d.} \quad \Rightarrow \text{minimum}$

Tikhonov Regularization (1963)

question: how to find appropriate h > 0 in $(P'P + h I_q)$?

let PERF(h;T) with $PERF: \mathbb{R}^+ \to \mathbb{R}^+$ measure the performance of RBF net for positive h and given training set T

find h^* such that $PERF(h^*;T) = \max\{PERF(h;T) : h \in \mathbb{R}^+\}$

 \rightarrow several approaches in use

 \rightarrow <u>here:</u> grid search and crossvalidation

```
(1) choose n \in \mathbb{N} and h_1, \ldots, h_n \in (0, H] \subset \mathbb{R}^+; set p^* = 0

(2) for i = 1 to n

(3) p_i = \operatorname{PERF}(h_i; T)

(4) if p_i > p^*

(5) p^* = p_i; k = i;

(6) endif

(7) endfor

(8) return h_k grid search
```

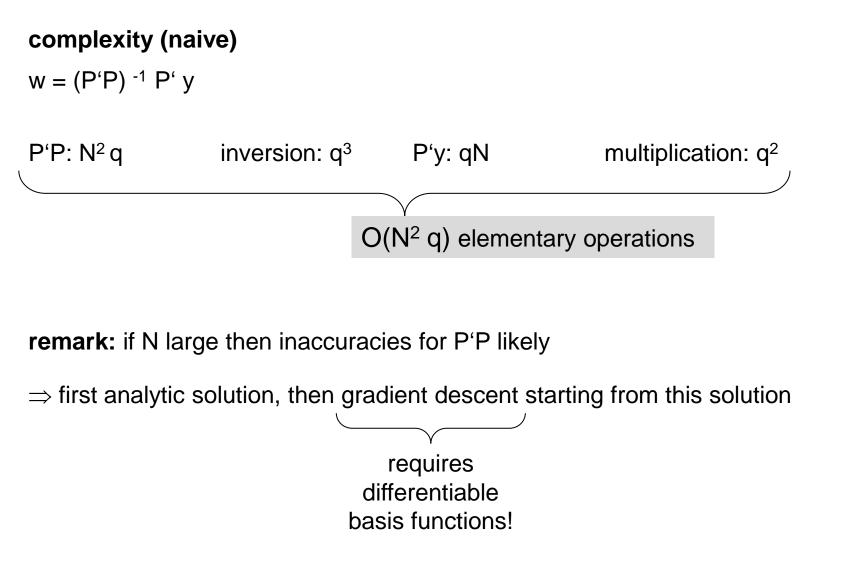
Crossvalidation

choose $k \in \mathbb{N}$ with k < |T|let T_1, \ldots, T_k be partition of training set T

PERF(h; T) =(1) set err = 0(2) for i = 1 to k(3) build matrix P and vector y from $T \setminus T_i$ (4) get weights $w = (P'P + h I)^{-1}P'y$ (5) build matrix P and vector y from T_i (6) get error e = (Pw - y)'(Pw - y)(7) err = err + e(8) endfor (9) return 1/err $T_1 \cup \ldots \cup T_k = T$ $T_i \cap T_j = \emptyset$ for $i \neq j$

Lecture 03

technische universität dortmund



Radial Basis Function Nets (RBF Nets)

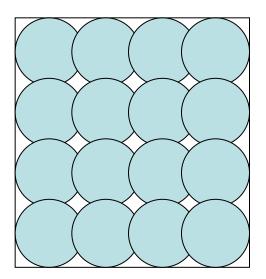
Lecture 03

Radial Basis Function Nets (RBF Nets)

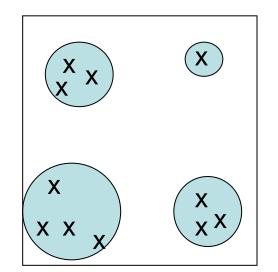
so far: tacitly assumed that RBF neurons are given

 \Rightarrow center c_k and radii σ considered given and known

how to choose c_k and σ ?



uniform covering



if training patterns inhomogenously distributed then first cluster analysis

Lecture 03

choose center of basis function from each cluster, use cluster size for setting σ

advantages:

- additional training patterns \rightarrow only local adjustment of weights
- optimal weights determinable in polynomial time
- regions not supported by RBF net can be identified by zero outputs
 - (if output close to zero, verify that output of each basis function is close to zero)

disadvantages:

- number of neurons increases exponentially with input dimension
- unable to extrapolate (since there are no centers and RBFs are local)

