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Plan for Today 

●  Application Fields of ANNs 

 Classification 

 Prediction 

 Function Approximation 
 

●  Recurrent MLP 

 Elman Nets 

 Jordan Nets 
 

●  Radial Basis Function Nets (RBF Nets) 

 Model 

 Training 
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Application Fields of ANNs 

Classification 

given: set of training patterns (input / output) output = label  
(e.g. class A, class B, ...) 

training patterns 
(known) 

weights 
(learnt) 

input 
(unknown) 

output 
(guessed) 

parameters 

phase I: 

train network 
 

phase II: 

apply network 
to unkown 
inputs for 
classification 
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Application Fields of ANNs 

Prediction of Time Series 

time series x1, x2, x3, ...       (e.g. temperatures, exchange rates, ...) 

task: given a subset of historical data, predict the future 

predictor 

... 

phase I: 

train network 
 

phase II: 

apply network 
to historical 
inputs for 
predicting 
unkown 
outputs 

training patterns:  

historical data where true output is known; 

error per pattern = 
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Application Fields of ANNs 

Prediction of Time Series: Example for Creating Training Data 

given: time series  10.5, 3.4, 5.6, 2.4, 5.9, 8.4, 3.9, 4.4, 1.7 

time window: k=3 

(10.5, 3.4, 5.6) 

known  
input 

2.4 

known  
output 

first input / output pair 

further input / output pairs: (3.4, 5.6, 2.4) 5.9 
(5.6, 2.4, 5.9) 8.4 

(2.4, 5.9, 8.4) 
(5.9, 8.4, 3.9) 

(8.4, 3.9, 4.4) 

3.9 
4.4 

1.7 
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Application Fields of ANNs 

Function Approximation (the general case) 

task: given training patterns (input / output), approximate unkown function 

→ should give outputs close to true unkown function for arbitrary inputs 

• values between training patterns are interpolated 

• values outside convex hull of training patterns are extrapolated 

x 
x 

x x 
x 

x 

x 

x : input training pattern 

: input pattern where output  
  to be interpolated 

: input pattern where output  
  to be extrapolated 
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Recurrent MLPs 

Jordan nets (1986) 

• context neuron:  
  reads output from some neuron at step t and feeds value into net at step t+1 

x1 

x2 

y1 

y2 

Jordan net = 

MLP + context neuron 
for each output,  
context neurons fully 
connected to input layer 
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Recurrent MLPs 

Elman nets (1990) 

Elman net = 

MLP + context neuron for each hidden layer neuron‘s output of MLP,  
context neurons fully connected to emitting MLP layer 

x1 

x2 

y1 

y2 
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Recurrent MLPs 

Training? 

⇒ unfolding in time (“loop unrolling“) 

• identical MLPs serially connected (finitely often) 

• results in a large MLP with many hidden (inner) layers 

• backpropagation may take a long time 

• but reasonable if most recent past more important than layers far away 

Why using backpropagation? 

⇒ use Evolutionary Algorithms directly on recurrent MLP! 
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Radial Basis Function Nets (RBF Nets) 

Definition: 

                  □ 

typically, || x || denotes Euclidean norm of vector x 

examples: 

Gaussian 

Epanechnikov 

Cosine 

unbounded 

bounded 

bounded 

Definition: 

RBF local iff  

ϕ(r) → 0 as r → ∞          □ 

local 
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Radial Basis Function Nets (RBF Nets) 

Definition: 

A function f: Rn → R is termed radial basis function net (RBF net)  

iff f(x) = w1 ϕ(|| x – c1 || ) + w2 ϕ(|| x – c2 || )  + ... + wp ϕ(|| x – cq || )      □ 

• layered net  

• 1st layer fully connected 

• no weights in 1st layer 

• activation functions differ 

ϕ(||x-c1||) 

ϕ(||x-c2||) 

ϕ(||x-cq||) 

x1 

x2 

xn 

∑ 

w1 

w2 

wp 

RBF neurons 
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Radial Basis Function Nets (RBF Nets) 

given : N training patterns (xi, yi) and q RBF neurons 

find : weights w1, ..., wq with minimal error 

known value unknown 

⇒ N linear equations with q unknowns 

solution: 

we know that f(xi) = yi for i = 1, ..., N and therefore we insist that 

pik 

known value 



Lecture 03 

G. Rudolph: Computational Intelligence ▪ Winter Term 2017/18 
13 

Radial Basis Function Nets (RBF Nets) 

in matrix form: P w = y  with P = (pik)  and  P: N x q, y: N x 1, w: q x 1,  

case N = q: w = P -1 y if P has full rank 

case N < q: many solutions but of no practical relevance 

case N > q: w = P+ y  where P+ is Moore-Penrose pseudo inverse 

P w = y      | · P‘ from left hand side    (P‘ is transpose of P) 

P‘P w = P‘ y      | · (P‘P) -1 from left hand side 

(P‘P) -1 P‘P w = (P‘P)-1 P‘ y    |  simplify 

unit matrix P+ 
• existence of (P‘P)-1  ? 
• numerical stability ? 
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Radial Basis Function Nets (RBF Nets) 

Tikhonov Regularization (1963) 

q.e.d. 

q.e.d. 
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Radial Basis Function Nets (RBF Nets) 

Tikhonov Regularization (1963) 

question:  how to justify this particular choice? 

interpretation: minimize TSSE and prefer solutions with small values! 



Lecture 03 

G. Rudolph: Computational Intelligence ▪ Winter Term 2017/18 
16 

Radial Basis Function Nets (RBF Nets) 

Tikhonov Regularization (1963) 

→  several approaches in use  
→  here:  grid search and crossvalidation 

grid search 
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Radial Basis Function Nets (RBF Nets) 

Crossvalidation 
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Radial Basis Function Nets (RBF Nets) 

complexity (naive) 
w = (P‘P) -1 P‘ y 

P‘P: N2 q   inversion: q3 P‘y: qN  multiplication: q2  

O(N2 q) elementary operations 

remark: if N large then inaccuracies for P‘P likely 

⇒ first analytic solution, then gradient descent starting from this solution 

requires 
differentiable 

basis functions! 
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Radial Basis Function Nets (RBF Nets) 

so far: tacitly assumed that RBF neurons are given 

⇒ center ck and radii σ considered given and known 

how to choose ck and σ ? 

uniform covering 

x x x 

x x 
x 

x 

x 
x 

x x 

if training patterns 
inhomogenously 
distributed then first 
cluster analysis 

choose center of basis 
function from each 
cluster, use cluster size 
for setting σ 
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Radial Basis Function Nets (RBF Nets) 

advantages: 

• additional training patterns → only local adjustment of weights 

• optimal weights determinable in polynomial time 

• regions not supported by RBF net can be identified by zero outputs 

  (if output close to zero, verify that output of each basis function is close to zero) 

disadvantages: 

• number of neurons increases exponentially with input dimension 

• unable to extrapolate (since there are no centers and RBFs are local) 
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