

Stable States

Theorem

An asynchronous BAM with arbitrary weight matrix W reaches steady state in a finite number of updates.

Proof:

$$E(x,y) = -\frac{1}{2}xWy' = \begin{cases} -\frac{1}{2}x(Wy') = -\frac{1}{2}xb' = -\frac{1}{2}\sum_{i=1}^{n}b_{i}x_{i} \\ \\ -\frac{1}{2}(xW)y' = -\frac{1}{2}ay' = -\frac{1}{2}\sum_{i=1}^{k}a_{i}y_{i} \end{cases}$$
 excitations

BAM asynchronous ⇒ select neuron at random from left or right layer, compute its excitation and change state if necessary (states of other neurons not affected)

Bidirectional Associative Memory (BAM)Lecture 04neuron i of left layer has changed
$$\Rightarrow$$
 sgn(x_i) \neq sgn(b_i)
 \Rightarrow x_i was updated to $\tilde{x}_i = -x_i$ $E(x,y) - E(\tilde{x},y) = -\frac{1}{2} \underbrace{b_i(x_i - \tilde{x}_i)}_{<0} > 0$ $\boxed{\frac{x_i \quad b_i \quad x_i \cdot \tilde{x}_i}{-1 \quad > 0 \quad < 0}}_{<0}$ use analogous argumentation if neuron of right layer has changed \Rightarrow every update (change of state) decreases energy function \Rightarrow since number of different bipolar vectors is finite
update stops after finite #updates

remark: dynamics of BAM get stable in local minimum of energy function!

Hopfield Network

Lecture 04

special case of BAM but proposed earlier (1982)

characterization:

- neurons preserve state until selected at random for update
- n neurons fully connected
- symmetric weight matrix
- no self-loops (→ zero main diagonal entries)
- thresholds θ , neuron i fires if excitations larger than θ_i

transition: select index k at random, new state is $\tilde{x} = \text{sgn}(xW - \theta)$

where
$$\tilde{x} = (x_1, ..., x_{k-1}, \tilde{x}_k, x_{k+1}, ..., x_n)$$

energy of state x is
$$E(x) = -\frac{1}{2}xWx' + \theta x'$$

U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2017/18 9

Hopfield network converges to local minimum of energy function after a finite number of updates. **Proof:** assume that x_k has been updated $\Rightarrow \tilde{x}_k = -x_k$ and $\tilde{x}_i = x_i$ for $i \neq k$ $E(x) - E(\tilde{x}) = -\frac{1}{2}xWx' + \theta x' + \frac{1}{2}\tilde{x}W\tilde{x}' - \theta \tilde{x}'$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j + \sum_{i=1}^{n} \theta_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \tilde{x}_i \tilde{x}_j - \sum_{i=1}^{n} \theta_i \tilde{x}_i$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) + \sum_{i=1}^{n} \theta_i \underbrace{(x_i - \tilde{x}_i)}_{= 0 \text{ if } i \neq k}$$

$$= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) - \frac{1}{2} \sum_{j=1}^{n} w_{kj} (x_k x_j - \tilde{x}_k \tilde{x}_j) + \theta_k (x_k - \tilde{x}_k)$$

$$= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) - \frac{1}{2} \sum_{j=1}^{n} w_{kj} (x_k x_j - \tilde{x}_k \tilde{x}_j) + \theta_k (x_k - \tilde{x}_k)$$

$$= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) - \frac{1}{2} \sum_{j=1}^{n} w_{kj} (x_k x_j - \tilde{x}_k \tilde{x}_j) + \theta_k (x_k - \tilde{x}_k)$$

$$= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) - \frac{1}{2} \sum_{j=1}^{n} w_{kj} (x_k x_j - \tilde{x}_k \tilde{x}_j) + \theta_k (x_k - \tilde{x}_k)$$

U technische universität dortmu<u>nd</u>

Hopfield Network

10

Hopfield NetworkLecture 04
$$= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} \sum_{j=1}^{n} w_{ij} x_i (\underline{x}_j - \tilde{x}_j) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$
$$= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$
$$= -\sum_{i=1}^{n} w_{ik} x_i (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1\\i\neq k}^{n} w_{ik} x_i - \theta_k \right] > 0$$
 since:
$$= -(x_k - \tilde{$$

Hopfield Network

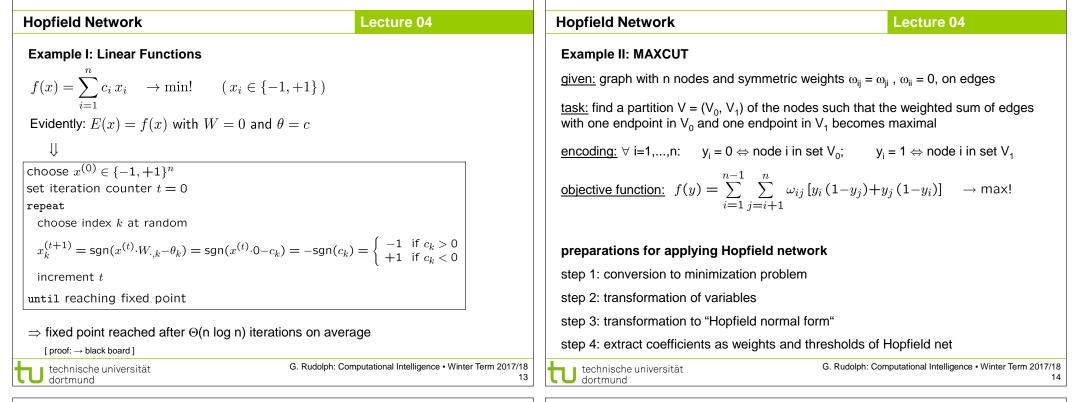
Lecture 04

Lecture 04

Application to Combinatorial Optimization

Idea:

- transform combinatorial optimization problem as objective function with $x \in \{-1,+1\}^n$
- rearrange objective function to look like a Hopfield energy function
- \bullet extract weights W and thresholds θ from this energy function
- \bullet initialize a Hopfield net with these parameters W and θ
- run the Hopfield net until reaching stable state (= local minimizer of energy function)
- stable state is local minimizer of combinatorial optimization problem



Hopfiel	d Network	Lecture 04
Example II: MAXCUT (continued)		
<u>step 1:</u>	conversion to minimization problem \Rightarrow multiply function with -1 \Rightarrow E(y) = -f(y) \rightarrow r	nin!
step 2:	transformation of variables $\Rightarrow y_i = (x_i+1) / 2$ $\Rightarrow f(x) = \sum_{i=1}^{n-1} \sum_{j=i+1}^n \omega_{ij} \left[\frac{x_i+1}{2} \left(1 - \frac{x_j+1}{2} \right) \right]$	$\frac{1}{2}\right) + \frac{x_j + 1}{2} \left(1 - \frac{x_i + 1}{2}\right) \right]$
$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[1 - x_i x_j \right]$		
	$=\underbrace{\frac{1}{2}\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\omega_{ij}}_{\text{constant value}}-\frac{1}{2}\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\omega_{ij}$	

technische universität dortmund remark: ω_{ij} : weights in graph — w_{ij} : weights in Hopfield net

technische universität dortmund

Hopfield Network

Example II: MAXCUT (continued)

 $= -\frac{1}{2}x'Wx + \theta'x$

step 3: transformation to "Hopfield normal form"

0'

 $w_{ij} = -\frac{\omega_{ij}}{2}$ for $i \neq j$, $w_{ii} = 0$, $\theta_i = 0$

 $E(x) = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j = -\frac{1}{2} \sum_{\substack{i=1 \ j=1}}^{n} \sum_{\substack{j=1 \ i\neq j}}^{n} \left(-\frac{1}{2} \omega_{ij}\right) x_i x_j$

step 4: extract coefficients as weights and thresholds of Hopfield net

16

Lecture 04