

Computational Intelligence

Winter Term 2017/18

Prof. Dr. Günter Rudolph

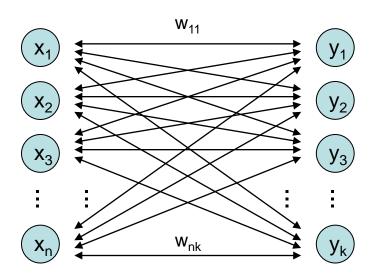
Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Bidirectional Associative Memory (BAM)
 - Fixed Points
 - Concept of Energy Function
 - Stable States = Minimizers of Energy Function
- Hopfield Network
 - Convergence
 - Application to Combinatorial Optimization

Network Model



x, y: row vectors

W: weight matrix

W': transpose of W

bipolar inputs $\in \{-1,+1\}$

- fully connected
- bidirectional edges
- synchonized:

start:
$$y^{(0)} = sgn(x^{(0)} W)$$

$$x^{(1)} = sgn(y^{(0)} W')$$

$$y^{(1)} = sgn(x^{(1)} W)$$

$$x^{(2)} = sgn(y^{(1)} W')$$

. . .

Fixed Points

Definition

(x, y) is *fixed point* of BAM iff
$$y = sgn(x W)$$
 and $x' = sgn(W y')$.

Set W = x' y. (note: x is row vector)

$$y = sgn(x W) = sgn(x(x'y)) = sgn((xx')y) = sgn(||x||^2 y) = y$$

> 0 (does not alter sign)

$$x' = sgn(W y') = sgn((x'y) y') = sgn(x'(y y')) = sgn(x'||y||^2) = x'$$

> 0 (does not alter sign)

Theorem: If W = x'y then (x,y) is fixed point of BAM.

Concept of Energy Function

given: BAM with $W = x^{2}y \implies (x,y)$ is stable state of BAM

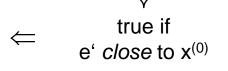
starting point x⁽⁰⁾

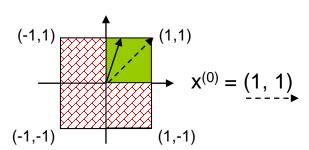
$$\Rightarrow$$
 y⁽⁰⁾ = sgn(x⁽⁰⁾ W)

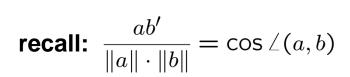
$$\Rightarrow$$
 excitation e' = W (y⁽⁰⁾)'

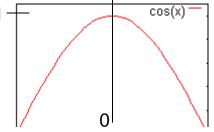
 \Rightarrow if sign(e') = $x^{(0)}$ then ($x^{(0)}$, $y^{(0)}$) stable state

small angle between e' and x⁽⁰⁾









small angle $\alpha \Rightarrow$ large cos(α)

Concept of Energy Function

required:

small angle between $e' = W y^{(0)}$ and $x^{(0)}$

- ⇒ larger cosine of angle indicates greater similarity of vectors
- \Rightarrow \forall e' of equal size: try to maximize $x^{(0)}$ e' = $||x^{(0)}|| \cdot ||$ e $||\cdot \cos \angle (x^{(0)}, e)$ fixed fixed \rightarrow max!
- \Rightarrow maximize $x^{(0)}$ e' = $x^{(0)}$ W $y^{(0)}$ '
- \Rightarrow identical to minimize $-x^{(0)}$ W $y^{(0)}$ '

Definition

Energy function of BAM at iteration t is E($x^{(t)}$, $y^{(t)}$) = $-\frac{1}{2}x^{(t)}$ W $y^{(t)}$ ·

Stable States

Theorem

An asynchronous BAM with arbitrary weight matrix W reaches steady state in a finite number of updates.

Proof:

$$E(x,y) = -\frac{1}{2}xWy' = \begin{cases} -\frac{1}{2}x(Wy') = -\frac{1}{2}xb' = -\frac{1}{2}\sum_{i=1}^{n}b_{i}x_{i} \\ -\frac{1}{2}(xW)y' = -\frac{1}{2}ay' = -\frac{1}{2}\sum_{i=1}^{k}a_{i}y_{i} \end{cases}$$
 excitations

BAM asynchronous ⇒

select neuron at random from left or right layer, compute its excitation and change state if necessary (states of other neurons not affected) neuron i of left layer has changed

$$\Rightarrow$$
 sgn(x_i) \neq sgn(b_i)

$$\Rightarrow$$
 x_i was updated to $\tilde{x}_i = -x_i$

$$E(x,y) - E(\tilde{x},y) = -\frac{1}{2} \underbrace{b_i (x_i - \tilde{x}_i)}_{<0} > 0$$

X _i	b _i	x _i - \widetilde{x}_i
-1	> 0	< 0
+1	< 0	> 0

use analogous argumentation if neuron of right layer has changed

- ⇒ every update (change of state) decreases energy function
- ⇒ since number of different bipolar vectors is finite update stops after finite #updates

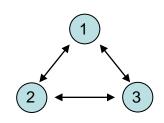
remark: dynamics of BAM get stable in local minimum of energy function!

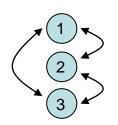
q.e.d.

special case of BAM but proposed earlier (1982)

characterization:

- neurons preserve state until selected at random for update
- n neurons fully connected
- symmetric weight matrix
- no self-loops (→ zero main diagonal entries)
- thresholds θ , neuron i fires if excitations larger than θ_i





transition: select index k at random, new state is
$$\tilde{x} = \text{Sgn}(xW - \theta)$$
 where $\tilde{x} = (x_1, \dots, x_{k-1}, \tilde{x}_k, x_{k+1}, \dots, x_n)$

energy of state x is $E(x) = -\frac{1}{2}xWx' + \theta x'$

Theorem:

Hopfield network converges to local minimum of energy function after a finite number of updates.

Proof: assume that $\mathbf{x_k}$ has been updated $\Rightarrow \tilde{x}_k = -x_k$ and $\tilde{x}_i = x_i$ for $i \neq k$

$$E(x) - E(\tilde{x}) = -\frac{1}{2}xWx' + \theta x' + \frac{1}{2}\tilde{x}W\tilde{x}' - \theta \tilde{x}'$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j + \sum_{i=1}^{n} \theta_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \tilde{x}_i \tilde{x}_j - \sum_{i=1}^{n} \theta_i \tilde{x}_i$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) + \sum_{i=1}^{n} \theta_i (x_i - \tilde{x}_i)$$

$$= -\frac{1}{2} \sum_{\substack{i=1 \ i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) - \frac{1}{2} \sum_{j=1}^{n} w_{kj} (x_k x_j - \tilde{x}_k \tilde{x}_j) + \theta_k (x_k - \tilde{x}_k)$$

$$= 0 \text{ if } i \neq k$$

$$= 0 \text{ if } i \neq k$$

Hopfield Network

Lecture 04

$$= -\frac{1}{2} \sum_{\substack{i=1 \\ i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} x_{i} \underbrace{\left(x_{j} - \tilde{x}_{j}\right)}_{\text{= 0 if j } \neq k} - \frac{1}{2} \sum_{\substack{j=1 \\ j \neq k}}^{n} w_{kj} x_{j} \left(x_{k} - \tilde{x}_{k}\right) + \theta_{k} \left(x_{k} - \tilde{x}_{k}\right)$$

$$= -\frac{1}{2} \sum_{\substack{i=1 \\ i \neq k}}^{n} w_{ik} \, x_i \, (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1 \\ j \neq k}}^{n} w_{kj} \, x_j \, (x_k - \tilde{x}_k) + \theta_k \, (x_k - \tilde{x}_k)$$

$$= -\sum_{i=1}^{n} w_{ik} x_i (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$$

$$= -(x_k - \tilde{x}_k) \left[\sum_{i=1}^n w_{ik} x_i - \theta_k \right] > 0$$
excitation e_k

> 0 if $x_k < 0$ and vice versa

since:

$$\begin{array}{c|cccc} x_k & x_k - \tilde{x}_k & e_k - \theta_k & \Delta E \\ +1 & > 0 & < 0 & > 0 \\ -1 & < 0 & > 0 & > 0 \end{array}$$

q.e.d.

Application to Combinatorial Optimization

Idea:

- transform combinatorial optimization problem as objective function with $x \in \{-1,+1\}^n$
- rearrange objective function to look like a Hopfield energy function
- ullet extract weights W and thresholds θ from this energy function
- ullet initialize a Hopfield net with these parameters W and ullet
- run the Hopfield net until reaching stable state (= local minimizer of energy function)
- stable state is local minimizer of combinatorial optimization problem

Example I: Linear Functions

$$f(x) = \sum_{i=1}^{n} c_i x_i \rightarrow \min! \quad (x_i \in \{-1, +1\})$$

Evidently: E(x) = f(x) with W = 0 and $\theta = c$

choose $x^{(0)} \in \{-1, +1\}^n$ set iteration counter t = 0

repeat

choose index k at random

$$x_k^{(t+1)} = \operatorname{sgn}(x^{(t)} \cdot W_{\cdot,k} - \theta_k) = \operatorname{sgn}(x^{(t)} \cdot 0 - c_k) = -\operatorname{sgn}(c_k) = \begin{cases} -1 & \text{if } c_k > 0 \\ +1 & \text{if } c_k < 0 \end{cases}$$

increment t

until reaching fixed point

 \Rightarrow fixed point reached after Θ (n log n) iterations on average

[proof: → black board]

Example II: MAXCUT

<u>given:</u> graph with n nodes and symmetric weights $\omega_{ij} = \omega_{ji}$, $\omega_{ii} = 0$, on edges

<u>task:</u> find a partition $V = (V_0, V_1)$ of the nodes such that the weighted sum of edges with one endpoint in V_0 and one endpoint in V_1 becomes maximal

encoding:
$$\forall i=1,...,n$$
: $y_i = 0 \Leftrightarrow \text{node i in set } V_0$; $y_i = 1 \Leftrightarrow \text{node i in set } V_1$

objective function:
$$f(y) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[y_i \left(1 - y_j \right) + y_j \left(1 - y_i \right) \right] \rightarrow \max!$$

preparations for applying Hopfield network

step 1: conversion to minimization problem

step 2: transformation of variables

step 3: transformation to "Hopfield normal form"

step 4: extract coefficients as weights and thresholds of Hopfield net

Example II: MAXCUT (continued)

step 1: conversion to minimization problem

$$\Rightarrow$$
 multiply function with -1 \Rightarrow E(y) = -f(y) \rightarrow min!

step 2: transformation of variables

$$\Rightarrow$$
 y_i = (x_i+1) / 2

$$\Rightarrow f(x) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[\frac{x_i + 1}{2} \left(1 - \frac{x_j + 1}{2} \right) + \frac{x_j + 1}{2} \left(1 - \frac{x_i + 1}{2} \right) \right]$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[1 - x_i x_j \right]$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} - \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j$$

constant value (does not affect location of optimal solution)

Example II: MAXCUT (continued)

step 3: transformation to "Hopfield normal form"

$$E(x) = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(-\frac{1}{2} \omega_{ij}\right) x_i x_j$$

$$= -\frac{1}{2} x' W x + \theta' x$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

step 4: extract coefficients as weights and thresholds of Hopfield net

$$w_{ij} = -\frac{\omega_{ij}}{2}$$
 for $i \neq j$, $w_{ii} = 0$, $\theta_i = 0$

remark: ω_{ij} : weights in graph — w_{ij} : weights in Hopfield net