

Computational Intelligence

Winter Term 2017/18

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Fuzzy sets
 - Axioms of fuzzy complement, t- and s-norms
 - Generators
 - Dual tripels

Considered so far:

Standard fuzzy operators

- $A^{c}(x) = 1 A(x)$
- $(A \cap B)(x) = \min \{ A(x), B(x) \}$
- $(A \cup B)(x) = \max \{ A(x), B(x) \}$
- \Rightarrow Compatible with operators for crisp sets with membership functions with values in $\mathbb{B} = \{0, 1\}$
- ∃ Non-standard operators? ⇒ Yes! Innumerable many!
- Defined via axioms.
- Creation via generators.

Fuzzy Complement: Axioms

Lecture 06

Definition

A function c: $[0,1] \rightarrow [0,1]$ is a *fuzzy complement* iff

(A1)
$$c(0) = 1$$
 and $c(1) = 0$.

(A2)
$$\forall$$
 a, b \in [0,1]: a \leq b \Rightarrow c(a) \geq c(b).

monotone decreasing

"nice to have":

(A3) $c(\cdot)$ is continuous.

(A4) $\forall a \in [0,1]: c(c(a)) = a$

involutive

Examples:

a) standard fuzzy complement c(a) = 1 - a

ad (A1): c(0) = 1 - 0 = 1 and c(1) = 1 - 1 = 0

ad (A2): c'(a) = -1 < 0 (monotone decreasing)

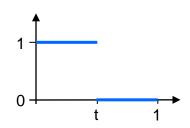
ad (A3): \square ad (A4): 1 - (1 - a) = a

Fuzzy Complement: Examples

Lecture 06

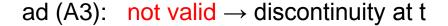
b)
$$c(a) = \begin{cases} 1 & \text{if } a \le t \\ 0 & \text{otherwise} \end{cases}$$

for some $t \in (0, 1)$



ad (A1):
$$c(0) = 1$$
 since $0 < t$ and $c(1) = 0$ since $t < 1$.

ad (A2): monotone (actually: constant) from 0 to t and t to 1, decreasing at t



ad (A4): not valid → counter example

$$C(C(\frac{1}{4})) = C(1) = 0 \neq \frac{1}{4}$$
 for $t = \frac{1}{2}$

c)
$$c(a) = \frac{1 + \cos(\pi a)}{2}$$

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

ad (A1):
$$c(0) = 1$$
 and $c(1) = 0$

ad (A2): $c'(a) = -\frac{1}{2} \pi \sin(\pi a) < 0$ since $\sin(\pi a) > 0$ for $a \in (0,1)$

ad (A4): not valid → counter example

$$c\left(c\left(\frac{1}{3}\right)\right) = c\left(\frac{3}{4}\right) = \frac{1}{2}\left(1 - \frac{1}{\sqrt{2}}\right) \neq \frac{1}{3}$$

Fuzzy Complement: Examples

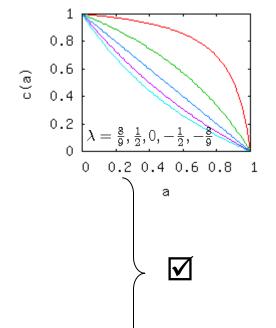
Lecture 06

d) c(a) =
$$\frac{1-a}{1+\lambda a}$$
 for $\lambda > -1$

Sugeno class

ad (A1):
$$c(0) = 1$$
 and $c(1) = 0$

ad (A2):
$$c(a) \ge c(b) \Leftrightarrow \frac{1-a}{1+\lambda a} \ge \frac{1-b}{1+\lambda b} \Leftrightarrow (1-a)(1+\lambda b) \ge (1-b)(1+\lambda a) \Leftrightarrow b(\lambda+1) \ge a(\lambda+1) \Leftrightarrow b \ge a$$



ad (A3): is continuous as a composition of continuous functions

ad (A4):
$$c(c(a)) = c\left(\frac{1-a}{1+\lambda a}\right) = \frac{1-\frac{1-a}{1+\lambda a}}{1+\lambda \frac{1-a}{1+\lambda a}} = \frac{a(\lambda+1)}{\lambda+1} = a$$

Fuzzy Complement: Examples

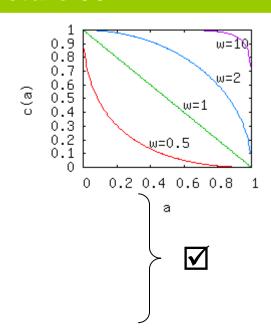
Lecture 06

e)
$$c(a) = (1 - a^w)^{1/w}$$
 for $w > 0$

Yager class

ad (A1):
$$c(0) = 1$$
 and $c(1) = 0$

ad (A2):
$$(1-a^w)^{1/w} \ge (1-b^w)^{1/w} \iff 1-a^w \ge 1-b^w \iff a^w \le b^w \iff a \le b$$



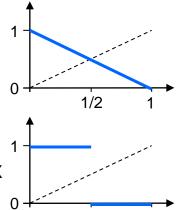
ad (A3): is continuous as a composition of continuous functions

ad (A4):
$$c(c(a)) = c\left((1-a^w)^{\frac{1}{w}}\right) = \left(1-\left[(1-a^w)^{\frac{1}{w}}\right]^w\right)^{\frac{1}{w}}$$
$$= (1-(1-a^w))^{\frac{1}{w}} = (a^w)^{\frac{1}{w}} = a$$

If function $c:[0,1] \rightarrow [0,1]$ satisfies axioms (A1) and (A2) of fuzzy complement then it has at most one fixed point a^* with $c(a^*) = a^*$.

Proof:

one fixed point \rightarrow see example (a) \rightarrow intersection with bisectrix



no fixed point \rightarrow see example (b) \rightarrow no intersection with bisectrix

$$\Rightarrow$$
 c(a*) = a* and c(b*) = b* (fixed points)

$$\Rightarrow$$
 c(a*) < c(b*) with a* < b* impossible if c(·) is monotone decreasing

 \Rightarrow contradiction to axiom (A2)

If function c:[0,1] \rightarrow [0,1] satisfies axioms (A1) – (A3) of fuzzy complement then it has exactly one fixed point a* with c(a*) = a*.

Proof:

Intermediate value theorem \rightarrow

If $c(\cdot)$ continuous (A3) and $c(0) \ge c(1)$ (A1/A2)

then $\forall v \in [c(1), c(0)] = [0,1]$: $\exists a \in [0,1]$: c(a) = v.

- ⇒ there must be an intersection with bisectrix
- ⇒ a fixed point exists and by previous theorem there are no other fixed points! ■

Examples:

(a)
$$c(a) = 1 - a$$

$$\Rightarrow$$
 a = 1 – a

$$\Rightarrow$$
 a* = $\frac{1}{2}$

(b)
$$c(a) = (1 - a^w)^{1/w}$$

$$\Rightarrow$$
 a = $(1 - a^w)^{1/w}$

$$\Rightarrow$$
 a* = $(\frac{1}{2})^{1/w}$

c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff

 \exists continuous function g: [0,1] $\rightarrow \mathbb{R}$ with

- g(0) = 0
- strictly monotone increasing
- \forall a \in [0,1]: c(a) = $g^{(-1)}(g(1) g(a))$.

defines an increasing generator

g⁽⁻¹⁾(x) pseudo-inverse

Examples

a)
$$g(x) = x$$

$$\Rightarrow$$
 g⁻¹(x) = x

$$\Rightarrow$$
 g⁻¹(x) = x \Rightarrow c(a) = 1 - a

b)
$$g(x) = x^w$$

$$\Rightarrow$$
 g⁻¹(x) = x^{1/w}

$$\Rightarrow$$
 g⁻¹(x) = x^{1/w} \Rightarrow c(a) = (1 - a^w)^{1/w}

c)
$$g(x) = \log(x+1) \Rightarrow g^{-1}(x) = e^x - 1 \Rightarrow c(a) = \exp(\log(2) - \log(a+1)) - 1$$

$$=\frac{1-a}{1+a}$$

(Sugeno class.
$$\lambda = 1$$
)

Examples

d)
$$g(a) = \frac{1}{\lambda} \log_e(1 + \lambda a)$$
 for $\lambda > -1$

- $g(0) = \log_e(1) = 0$
- strictly monotone increasing since $g'(a) = \frac{1}{1+\lambda a} > 0$ for $a \in [0,1]$
- inverse function on [0,1] is $g^{-1}(a) = \frac{\exp(\lambda a) 1}{\lambda}$, thus

$$c(a) = g^{-1} \left(\frac{\log(1+\lambda)}{\lambda} - \frac{\log(1+\lambda a)}{\lambda} \right)$$

$$= \frac{\exp(\log(1+\lambda) - \log(1+\lambda a)) - 1}{\lambda}$$

$$= \frac{1}{\lambda} \left(\frac{1+\lambda}{1+\lambda a} - 1 \right) = \frac{1-a}{1+\lambda a}$$
 (Sugeno Complement)

c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff

 \exists continuous function f: $[0,1] \rightarrow \mathbb{R}$ with

- f(1) = 0
- strictly monotone decreasing
- \forall a \in [0,1]: c(a) = f⁽⁻¹⁾(f(0) f(a)).

defines a decreasing generator

f⁽⁻¹⁾(x) pseudo-inverse

Examples

a)
$$f(x) = k - k \cdot x$$
 $(k > 0)$ $f^{(-1)}(x) = 1 - x/h$

a)
$$f(x) = k - k \cdot x$$
 $(k > 0)$ $f^{(-1)}(x) = 1 - x/k$ $c(a) = 1 - \frac{k - (k - ka)}{k} = 1 - a$

b)
$$f(x) = 1 - x^{w}$$

$$f^{(-1)}(x) = (1-x)^{1/w}$$

$$f^{(-1)}(x) = (1 - x)^{1/w}$$
 $c(a) = f^{-1}(a^w) = (1 - a^w)^{1/w}$ (Yager)

Definition

A function t:[0,1] x [0,1] \rightarrow [0,1] is a *fuzzy intersection* or *t-norm* iff \forall a,b,d \in [0,1]

(A1)
$$t(a, 1) = a$$
 (boundary condition)

(A2)
$$b \le d \Rightarrow t(a, b) \le t(a, d)$$
 (monotonicity)

(A3)
$$t(a,b) = t(b, a)$$
 (commutative)

$$(A4) t(a, t(b, d)) = t(t(a, b), d)$$
 (associative)

"nice to have"

(A6)
$$t(a, a) < a$$
 for $0 < a < 1$ (subidempotent)

(A7)
$$a_1 < a_2$$
 and $b_1 \le b_2 \implies t(a_1, b_1) < t(a_2, b_2)$ (strict monotonicity)

Note: the only idempotent t-norm is the standard fuzzy intersection

The only idempotent t-norm is the standard fuzzy intersection.

Proof:

Assume there exists a t-norm with t(a,a) = a for all $a \in [0,1]$.

• If $0 \le a \le b \le 1$ then

$$a = t(a,a) \le t(a,b) \le t(a,1) = a$$

by assumption by monotonicity by boundary condition

and hence t(a,b) = a.

• If 0 ≤ b ≤ a ≤ 1 then

$$b = t(b,b) \le t(b,a) \le t(b,1) = b$$

by assumption by monotonicity by boundary condition

and hence t(a,b) = t(b,a) = b.

by commutativity

t(a,b) = min(a,b) is the only possible solution!

q.e.d.

Examples:

Name	Function

(a) Standard
$$t(a, b) = min \{ a, b \}$$

(b) Algebraic Product
$$t(a, b) = a \cdot b$$

(c) Bounded Difference
$$t(a, b) = max \{ 0, a + b - 1 \}$$

(d) Drastic Product
$$t(a, b) = \begin{cases} a & \text{if } b = 1 \\ b & \text{if } a = 1 \\ 0 & \text{otherwise} \end{cases}$$

Is algebraic product a t-norm? Check the 4 axioms!

ad (A1):
$$t(a, 1) = a \cdot 1 = a$$

$$\overline{\mathbf{V}}$$

ad (A3):
$$t(a, b) = a \cdot b = b \cdot a = t(b, a)$$

ad (A2):
$$a \cdot b \le a \cdot d \Leftrightarrow b \le d$$

$$\sqrt{}$$

ad (A4):
$$a \cdot (b \cdot d) = (a \cdot b) \cdot d$$

 \square

(d)

(c)

Function t: $[0,1] \times [0,1] \rightarrow [0,1]$ is a t-norm \Leftrightarrow

 \exists decreasing generator f:[0,1] $\rightarrow \mathbb{R}$ with t(a, b) = f⁻¹(min{ f(0), f(a) + f(b) }).

Example:

f(x) = 1/x - 1 is decreasing generator since

• f(x) is continuous

 $\overline{\mathbf{V}}$

•
$$f(1) = 1/1 - 1 = 0$$

 $\overline{\mathbf{V}}$

•
$$f'(x) = -1/x^2 < 0$$
 (monotone decreasing)

 $\overline{\mathbf{V}}$

inverse function is
$$f^{-1}(x) = \frac{1}{x+1}$$
; $f(0) = \infty \Rightarrow \min\{f(0), f(a) + f(b)\} = f(a) + f(b)$

$$\Rightarrow$$
 t(a, b) = $f^{-1}\left(\frac{1}{a} + \frac{1}{b} - 2\right) = \frac{1}{\frac{1}{a} + \frac{1}{b} - 1} = \frac{ab}{a + b - ab}$

Definition

A function s:[0,1] x [0,1] \rightarrow [0,1] is a *fuzzy union* or *s-norm* iff \forall a,b,d \in [0,1]

(A1)
$$s(a, 0) = a$$
 (boundary condition)

(A2)
$$b \le d \Rightarrow s(a, b) \le s(a, d)$$
 (monotonicity)

(A3)
$$s(a, b) = s(b, a)$$
 (commutative)

$$(A4) s(a, s(b, d)) = s(s(a, b), d)$$
 (associative)

"nice to have"

(A6)
$$s(a, a) > a$$
 for $0 < a < 1$ (superidempotent)

(A7)
$$a_1 < a_2$$
 and $b_1 \le b_2 \implies s(a_1, b_1) < s(a_2, b_2)$ (strict monotonicity)

Note: the only idempotent s-norm is the standard fuzzy union

Examples:

Name	Function	(a)	(b)
Standard	s(a, b) = max { a, b }		
Algebraic Sum	$s(a, b) = a + b - a \cdot b$		
Bounded Sum	s(a, b) = min { 1, a + b }		•
Drastic Union	$s(a, b) = \begin{cases} a & \text{if } b = 0 \\ b & \text{if } a = 0 \\ 1 & \text{otherwise} \end{cases}$		
		(c)	(d)

Is algebraic sum a t-norm? Check the 4 axioms!

ad (A1):
$$s(a, 0) = a + 0 - a \cdot 0 = a$$

ad (A2):
$$a + b - a \cdot b \le a + d - a \cdot d \Leftrightarrow b (1 - a) \le d (1 - a) \Leftrightarrow b \le d \ \square$$

ad (A3): ☑

ad (A4): ☑

Function s: $[0,1] \times [0,1] \rightarrow [0,1]$ is a s-norm \Leftrightarrow

∃increasing generator g:[0,1] $\rightarrow \mathbb{R}$ with s(a, b) = g⁻¹(min{ g(1), g(a) + g(b) }). ■

Example:

g(x) = -log(1 - x) is increasing generator since

• g(x) is continuous

 $\sqrt{}$

• g(0) = -log(1 - 0) = 0

- $\overline{\mathbf{V}}$
- g'(x) = 1/(1-x) > 0 (monotone increasing)

inverse function is $g^{-1}(x) = 1 - \exp(-x)$; $g(1) = \infty \Rightarrow \min\{g(1), g(a) + g(b)\} = g(a) + g(b)$

$$\Rightarrow$$
 s(a, b) = $g^{-1}(-\log(1-a) - \log(1-b))$

$$= 1 - \exp(\log(1-a) + \log(1-b))$$

$$= 1 - (1 - a) (1 - b) = a + b - ab$$
 (algebraic sum)

Background from classical set theory:

 \cap and \cup operations are dual w.r.t. complement since they obey DeMorgan's laws

Definition

A pair of t-norm $t(\cdot, \cdot)$ and s-norm $s(\cdot, \cdot)$ is said to be **dual with regard to the fuzzy complement** $c(\cdot)$ iff

- c(t(a, b)) = s(c(a), c(b))
- c(s(a, b)) = t(c(a), c(b))

for all a, $b \in [0,1]$.

Definition

Let (c, s, t) be a tripel of fuzzy complement c(·), s- and t-norm.

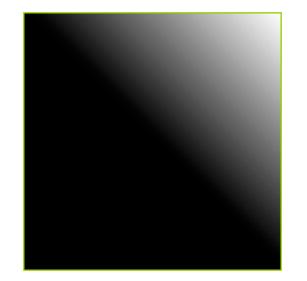
If t and s are dual to c then the tripel (c,s, t) is called a *dual tripel*.

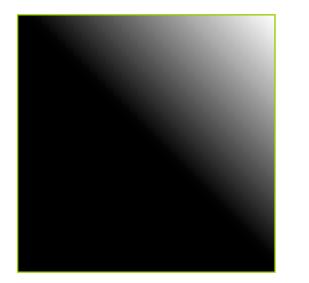
Examples of dual tripels

t-norm	s-norm	complement
min { a, b }	max { a, b }	1 – a
a · b	a + b − a · b	1 – a
$\max \{ 0, a + b - 1 \}$	min { 1, a + b }	1 – a

Dual Triples vs. Non-Dual Triples

Lecture 06



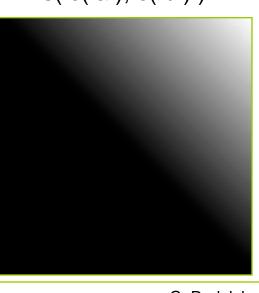


- bounded difference
- bounded sum
- standard complement
- \Rightarrow left image = right image

c(t(a,b))

s(c(a), c(b))

- algebraic product
- bounded sum
- standard complement
- ⇒ left image ≠ right image



Why are dual triples so important?

- ⇒ allow equivalence transformations of fuzzy set expressions
- ⇒ required to transform into some equivalent normal form (standardized input)
- ⇒ e.g. two stages: intersection of unions

$$\bigcap_{i=1}^{n} (A_i \cup B_i)$$

$$\bigcup_{i=1}^{n} (A_i \cap B_i)$$

Example:

$$A \cup (B \cap (C \cap D)^c) =$$

← not in normal form

$$A \cup (B \cap (C^c \cup D^c)) =$$

← equivalent if DeMorgan's law valid (dual triples!)

$$A \cup (B \cap C^c) \cup (B \cap D^c)$$

← equivalent (distributive lattice!)