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Plan for Today 

●  Approximate Reasoning 

●  Fuzzy Control 



Lecture 08 

G. Rudolph: Computational Intelligence ▪ Winter Term 2017/18 
3 

G. Rudolph: Computational Intelligence ▪ Winter Term 2017/18 
3 

Approximative Reasoning 

So far: 

● p: IF X is A THEN Y is B 
 
   → R(x, y) = Imp( A(x), B(y) )        rule as relation; fuzzy implication 
 

● rule:   IF X is A THEN Y is B 
   fact:  X is A‘ 
   conclusion: Y is B‘ 
 
   → B‘(y) = supx∈X t( A‘(x), R(x, y) )        composition rule of inference  

Thus: 

● B‘(y) = supx∈X t( A‘(x), Imp( A(x), B(y) ) ) 

given : fuzzy rule 

input : fuzzy set A‘ 

output : fuzzy set B‘ 
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x ≠ x0 

B‘(y)  =            supx∈X t( A‘(x), Imp( A(x), B(y) ) ) 

   

  sup t( 0, Imp( A(x), B(y) ) ) 

 = 

         t( 1, Imp( A(x0), B(y) ) )   

for x ≠ x0 

 

for x = x0 

here: 

A‘(x) =     
1  for x = x0 

0  otherwise 
crisp input! 

for x ≠ x0  since t(0, a) = 0 

 

for x = x0  since t(a, 1) = a 

        0 

 = 

       Imp( A(x0), B(y) )  

Approximative Reasoning 
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Lemma: 

a) t(a, 1) = a 

b) t(a, b) ≤ min { a, b } 

c) t(0, a) = 0 
 

Proof: 

ad a) Identical to axiom 1 of t-norms. 

ad b) From monotonicity (axiom 2) follows for b ≤ 1, that t(a, b) ≤ t(a, 1) = a. 
    Commutativity (axiom 3) and monotonicity lead in case of a ≤ 1 to  
    t(a, b) = t(b, a) ≤ t(b, 1) = b. Thus, t(a, b) is less than or  
    equal to a as well as b, which in turn implies t(a, b) ≤ min{ a, b }. 

ad c) From b) follows 0 ≤ t(0, a) ≤ min { 0, a } = 0 and therefore t(0, a) = 0.         ■ 

by a) 

Approximative Reasoning 
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Multiple rules: 

IF X is A1, THEN Y is B1 
IF X is A2, THEN Y is B2 
IF X is A3, THEN Y is B3 
… 
IF X is An, THEN Y is Bn 
X is A‘ 

Y is B‘ 
 

→ R1(x, y) = Imp1( A1(x), B1(y) ) 
→ R2(x, y) = Imp2( A2(x), B2(y) ) 
→ R3(x, y) = Imp3( A3(x), B3(y) ) 
… 
→ Rn(x, y) = Impn( An(x), Bn(y) ) 
 

Multiple rules for crisp input:    x0 is given 

B1‘(y) = Imp1(A1(x0), B1(y) ) 
… 
Bn‘(y) = Impn(An(x0), Bn(y) ) 

aggregation of rules or 
local inferences necessary! 

aggregate! ⇒  B‘(y) = aggr{ B1‘(y), …, Bn‘(y) },  where aggr = min 
max 

Approximative Reasoning 
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FITA: “First inference, then aggregate!“ 

1. Each rule of the form IF X is Ak THEN Y is Bk  must be transformed by 
an appropriate fuzzy implication Impk(·,·) to a relation Rk : 
Rk(x, y) = Impk( Ak(x), Bk(y) ). 

2. Determine Bk‘(y) = Rk(x, y) ◦ A‘(x) for all k = 1, …, n (local inference). 

3. Aggregate to  B‘(y) = β( B1‘(y), …, Bn‘(y) ). 

FATI: “First aggregate, then inference!“ 

1. Each rule of the form IF X ist Ak THEN Y ist Bk  must be transformed by     
an appropriate fuzzy implication Impk(·, ·) to a relation Rk : 
Rk(x, y) = Impk( Ak(x), Bk(y) ). 

2. Aggregate R1, …, Rn to a superrelation with aggregating function α(·): 
R(x, y) = α( R1(x, y), …, Rn(x, y) ). 

3. Determine B‘(y) = R(x, y) ◦ A‘(x) w.r.t. superrelation (inference). 

Approximative Reasoning 
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2. Equivalence of FITA and FATI ?  

FITA:          B‘(y)  =  β( B1‘(y), …, Bn‘(y) ) 

  =  β( R1(x, y) ◦ A‘(x), …, Rn(x, y) ◦ A‘(x) ) 

FATI:          B‘(y)  =  R(x, y) ◦ A‘(x)  

  =  α( R1(x, y), …, Rn(x, y) ) ◦ A‘(x) 

1. Which principle is better? FITA or FATI? 

Approximative Reasoning 
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special case: 

A‘(x) =     
1  for x = x0 

0  otherwise 
crisp input! 

On the equivalence of FITA and FATI: 

FITA:          B‘(y)  =  β( B1‘(y), …, Bn‘(y) ) 

  =  β( Imp1(A1(x0), B1(y) ), …, Impn(An(x0), Bn(y) ) )  

FATI:          B‘(y)  =  R(x, y) ◦ A‘(x) 

  =  supx∈X t( A‘(x), R(x, y) )  (from now: special case) 

  =  R(x0, y)  

  =  α( Imp1( A1(x0), B1(y) ), …, Impn( An(x0), Bn(y) ) ) 

evidently: sup-t-composition with arbitrary t-norm and α(·) = β(·) 

Approximative Reasoning 
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● AND-connected premises  
 
   IF X1 = A11 AND X2 = A12 AND … AND Xm = A1m THEN Y = B1 
   … 
   IF Xn = An1 AND X2 = An2 AND … AND Xm = Anm THEN Y = Bn 
 

   reduce to single premise for each rule k: 
 

   Ak(x1,…, xm) = min { Ak1(x1), Ak2(x2), …, Akm(xm) }           or in general: t-norm 

● OR-connected premises 
 
   IF X1 = A11 OR X2 = A12 OR … OR Xm = A1m THEN Y = B1 
   … 
   IF Xn = An1 OR X2 = An2 OR … OR Xm = Anm THEN Y = Bn 
 

   reduce to single premise for each rule k: 
 

   Ak(x1,…, xm) = max { Ak1(x1), Ak2(x2), …, Akm(xm) }           or in general: s-norm 

Approximative Reasoning 
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important: 

● if rules of the form IF X is A THEN Y is B interpreted as logical implication 

    ⇒  R(x, y) = Imp( A(x), B(y) ) makes sense 

● we obtain:  B‘(y) = supx∈X t( A‘(x), R(x, y) ) 

⇒ the worse the match of premise A‘(x), the larger is the fuzzy set B‘(y) 

⇒ follows immediately from axiom 1: a ≤ b implies Imp(a, z) ≥ Imp(b, z) 

interpretation of output set B‘(y): 

● B‘(y) is the set of values that are still possible 

● each rule leads to an additional restriction of the values that are still possible 

⇒ resulting fuzzy sets B‘k(y) obtained from single rules must be mutually intersected! 

⇒ aggregation via    B‘(y) = min { B1‘(y), …, Bn‘(y) } 

Approximative Reasoning 
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important: 

● if rules of the form IF X is A THEN Y is B  are not interpreted as logical 
   implications, then the function Fct(¢) in 
    

                                         R(x, y) = Fct( A(x), B(y) ) 
 

   can be chosen as required for desired interpretation. 

● frequent choice (especially in fuzzy control): 

- R(x, y) = min { A(x), B(x) }  Mamdani – “implication“ 

- R(x, y) = A(x) · B(x)   Larsen – “implication“ 

⇒  of course, they are no implications but specific t-norms! 

⇒  thus, if relation R(x, y) is given,  
     then the composition rule of inference  

B‘(y) = A‘(x) ◦ R(x, y) = supx∈X min { A’(x), R(x, y) } 

still can lead to a conclusion via fuzzy logic. 

Approximative Reasoning 
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example:  [JM96, S. 244ff.] 

industrial drill machine → control of cooling supply 

modelling 

linguistic variable  : rotation speed  

linguistic terms  : very low, low, medium, high, very high 

ground set  : X with 0 ≤ x ≤ 18000 [rpm] 

1000 9000 5000 13000 17000 rotation 
speed 

vl l m h vh 
1 

Approximative Reasoning 
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example:  (continued) 

modelling 

linguistic variable  : cooling quantity  

linguistic terms  : very small, small, normal, much, very much 

ground set  : Y with 0 ≤ y ≤ 18 [liter / time unit] 

1 9 5 13 17 cooling 
quantity 

vs s n m vm 
1 

Approximative Reasoning 

industrial drill machine → control of cooling supply 
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rule base 

IF rotation speed IS  very low THEN cooling quantity IS  very small 

low 

medium 

high 

very high 

small 

normal 

much  

very much 

Approximative Reasoning 

example:  (continued) 

industrial drill machine → control of cooling supply 

sets Svl, Sl, Sm, Sh, Svh sets Cvs, Cs, Cn, Cm, Cvm 

“rotation speed” “cooling quantity” 
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1. input: crisp value   x0 = 10000 min-1    (not a fuzzy set!) 
 

→ fuzzyfication = determine membership for each fuzzy set over X 
 

→ yields  S’ = (0, 0, ¾, ¼, 0) via x  ( Svl(x0), Sl(x0), Sm(x0), Sh(x0), Svh(x0) ) 
 

2. FITA: locale inference      ⇒ since Imp(0,a) = 0 we only need to consider: 
 

Sm: C’n(y)  = Imp( ¾, Cn(y) ) 
 

Sh: C’m(y) = Imp( ¼, Cm(y) ) 
 

3. aggregation: 
 

C’(y) =  aggr { C’n(y), C’m(y) } = max { Imp( ¾, Cn(y) ), Imp( ¼, Cm(y) ) } 

? 

? 

Approximative Reasoning 

example:  (continued) 

industrial drill machine → control of cooling supply 
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C’(y) = max { Imp( ¾, Cn(y) ), Imp( ¼, Cm(y) ) } 

in case of control task typically no logic-based interpretation: 

→ max-aggregation and 

→ relation R(x,y) not interpreted as implication. 

often: R(x,y) = min(a, b)          „Mamdani controller“ 

thus: 

C‘(y) = max { min { ¾, Cn(y) }, min { ¼, Cm(y) } } 

→ graphical illustration 

Approximative Reasoning 

example:  (continued) 

industrial drill machine → control of cooling supply 
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C‘(y) = max { min { ¾, Cn(y) }, min { ¼, Cm(y) } }, x0 = 10000 [rpm] 

1000 9000 5000 13000 17000 

rotation speed 

vl l m h vh 
1 

1 9 5 13 17 

cooling quantity 

vs s n m sm 
1 

Approximative Reasoning 

example:  (continued) 

industrial drill machine → control of cooling supply 
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Fuzzy Control 

open and closed loop control: 
affect the dynamical behavior of a system  
in a desired manner 

● open loop control 
 

   control is aware of reference values and has a model of the system 
   ⇒ control values can be adjusted, 
        such that process value of system is equal to reference value 

   problem: noise! ⇒ deviation from reference value not detected 
 

● closed loop control 
 

   now: detection of deviations from reference value possible  
   (by means of measurements / sensors) 
   and new control values can take into account the amount of deviation 
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open loop control 

system 
process 

 

control 

w u y 

process  
value 

reference  
value 

assumption: undisturbed operation  ⇒  process value = reference value 

Fuzzy Control 
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closed loop control 

system 
process 

 

control 

w u 

d 

y 

noise 

process 
value 

control deviation = reference value – process value 

Fuzzy Control 

reference  
value 
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required: 
 

model of system / process 

→ as differential equations or difference equations (DEs) 

→ well developed theory available 

so, why fuzzy control? 
● there exists no process model in form of DEs etc. 
   (operator/human being has realized control by hand) 

● process with high-dimensional nonlinearities → no classic methods available 

● control goals are vaguely formulated („soft“ changing gears in cars) 

Fuzzy Control 
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fuzzy description of control behavior 

but fact A‘ is not a fuzzy set but a crisp input 

→ actually, it is the current process value 

but crisp control value required for the process / system 

→ defuzzification (= “condense” fuzzy set to crisp value) 

fuzzy controller executes inference step 

→ yields fuzzy output set B‘(y) 

IF X is A1, THEN Y is B1 
IF X is A2, THEN Y is B2 
IF X is A3, THEN Y is B3 
… 
IF X is An, THEN Y is Bn 
X is A‘ 

Y is B‘ 

similar to approximative reasoning 

Fuzzy Control 
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defuzzification  

● maximum method 

- only active rule with largest activation level is taken into account 

→ suitable for pattern recognition / classification 

→ decision for a single alternative among finitely many alternatives 

- selection independent from activation level of rule (0.05 vs. 0.95) 

- if used for control: incontinuous curve of output values (leaps) 

Def: rule k active ⇔ Ak(x0) > 0 

0,5 

t 

0,5 

B‘(y) 

0,5 

B‘(y) 

0,5 

B‘(y) 

Fuzzy Control 
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defuzzification  

● maximum mean value method 

- all active rules with largest activation level are taken into account 

→ interpolations possible, but need not be useful 

→ obviously, only useful for neighboring rules with max. activation 

- selection independent from activation level of rule (0.05 vs. 0.95) 

- if used in control: incontinuous curve of output values (leaps) 

0,5 

B‘(y) 

Y* = { y ∈ Y: B‘(y) = hgt(B‘) } 

0,5 

B‘(y) 

useful solution?  → 

Fuzzy Control 
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defuzzification  

● center-of-maxima method (COM) 

- only extreme active rules with largest activation level are taken into account 

→ interpolations possible, but need not be useful 

→ obviously, only useful for neighboring rules with max. activation level 

- selection indepependent from activation level of rule (0.05 vs. 0.95) 

- in case of control: incontinuous curve of output values (leaps) 

0,5 

B‘(y) 

Y* = { y ∈ Y: B‘(y) = hgt(B‘) } 

0,5 

B‘(y) 

? 0,5 

B‘(y) 

? 

Fuzzy Control 
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defuzzification  

● Center of Gravity (COG) 

- all active rules are taken into account  

→ but numerically expensive … 

→ borders cannot appear in output ( ∃ work-around ) 

- if only single active rule: independent from activation level  

- continuous curve for output values 

…only valid for HW solution, today! 

Fuzzy Control 
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Excursion: COG 

triangle: 

y1 y2 y3 

trapezoid: 

y1 y2 y4 y3 

y 

B‘(y) 

1 

pendant in  
probability theory: 
expectation value 

1 3,77... 

Fuzzy Control 
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y 

z=B‘(y) 

1 

y1 y2 y3 y4 y5 y6 y7 

assumption: fuzzy membership functions piecewise linear 

output set B‘(y) represented by sequence of points (y1, z1), (y2, z2), …, (yn, zn)  

⇒ area under B‘(y) and weighted area can be determined additively piece by piece 

⇒ linear equation z = m y + b ) insert (yi, zi) and (yi+1,zi+1) 

⇒ yields m and b for each of the n-1 linear sections 
 

⇒ 

 
⇒ 

Fuzzy Control 
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Defuzzification  

● Center of Area (COA) 

• developed as an approximation of COG 

• let ŷk be the COGs of the output sets B’k(y): 

Fuzzy Control 

how to: 
assume that fuzzy sets Ak(x) and Bk(x) are triangles or trapezoids 
let x0 be the crisp input value 
for each fuzzy rule “IF Ak is X THEN Bk is Y“ 
   determine B‘k(y) = R( Ak(x0), Bk(y) ), where R(.,.) is the relation 
   find ŷk as center of gravity of B‘k(y) 
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