Computational Intelligence

Winter Term 2017/18

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

Plan for Today

- Fuzzy Clustering

Cluster Formation and Analysis

Introductory Example: Textile Industry

\rightarrow production of T-shirts (for men)

best for producer : one size VS.
best for consumer: made-to-measure
\Rightarrow compromize: S, M, L, XL, 2XL

5 sizes
\rightarrow OK, but which lengths for which size?

Cluster Formation and Analysis

idea:

- select, say, 2000 men at random and measure their "body lengths"
- arrange these 2000 men into five disjoint groups

such that

arm's length, collar size, chest girth, ...

- deviations from mean of group as small as possible
- differences between group means as large as possible

in general:

arrange objects into groups / clusters
such that

- elements within a cluster are as homogeneous as possible
- elements across clusters are as heterogeneous as possible

Cluster Formation and Analysis

numerical example: 1000 points uniformly sampled in $[0,1] \times[0,1] \rightarrow$ form 5 cluster

Hard / Crisp Clustering

given data points $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}} \in \mathbb{R}^{\mathrm{n}}$
objective: \quad group data points into cluster
such that

- points within cluster are as homogeneous as possible
- points across clusters are as heterogeneous as possible
\Rightarrow crisp clustering is just a partitioning of data set $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{N}\right\}$, i.e., K
$\bigcup C_{k}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{N}\right\} \quad$ and $\quad \forall j \neq k: C_{j} \cap C_{k}=\emptyset$
$k=1$
where C_{k} is Cluster k and K denotes the number of clusters.

Constraint: $\forall k=1, \ldots, K:\left|C_{k}\right| \geq 1 \quad$ hence $1 \leq K \leq N$

Hard / Crisp Clustering

Complexity: How many choices to assign N objects into K clusters?
more precisely:
\rightarrow objects are distinguishable / labelled
\rightarrow clusters are nondistinguishable / unlabelled and nonempty
\Rightarrow Stirling number of 2nd kind $\quad S(\mathrm{~N}, K)=\frac{1}{K!} \sum_{i=1}^{K}(-1)^{k-i}\binom{k}{i} \cdot i^{\mathrm{N}} \quad \sim \frac{K^{\mathrm{N}}}{K!}$

N / K	1	2	3	4	5
10	1	511	9,330	34,105	42,525
11	1	1,023	28,501	145,750	246,730
12	1	2,047	86,526	611,501	$1,379,400$
13	1	4,095	261,625	$2,532,530$	$7,508,501$
14	1	8,191	788,970	$10,391,745$	$40,075,035$
15	1	16,383	$2,375,101$	$42,355,950$	$210,766,920$

$$
\begin{aligned}
S(100,5) & =6.6 \times 10^{67} \\
S(1000,5) & =7.8 \times 10^{696} \\
S(2000,5) & =7.3 \times 10^{1395}
\end{aligned}
$$

\Rightarrow enumeration hopeless! $\quad \Rightarrow$ iterative improvement procedure required!

Hard / Crisp Clustering

idea: define objective function
that measures compactness of clusters and quality of partition
\rightarrow elements in cluster C_{j} should be as homogeneous as possible!
\rightarrow sum of squared distances to unknown center y should be as small as possible
\rightarrow find y with $\sum_{i \in C_{j}} d\left(x_{i}, y\right)^{2} \rightarrow \min !$
typically, $\quad d\left(x_{i}, y\right)=\left\|x_{i}-y\right\|=\sqrt{\left(x_{i}-y\right)^{\prime}\left(x_{i}-y\right)} \quad$ (Euclidean norm)
$\frac{d}{d y} \sum_{i \in C_{j}}\left(x_{i}-y\right)^{\prime}\left(x_{i}-y\right)=-2 \sum_{i \in C_{j}}\left(x_{i}-y\right) \stackrel{!}{=} 0$
$\Rightarrow \sum_{i \in C_{j}} x_{i} \stackrel{!}{=} \sum_{i \in C_{j}} y=\left|C_{j}\right| \cdot y \quad \Rightarrow y=\frac{1}{\left|C_{j}\right|} \sum_{i \in C_{j}} x_{i}=: \bar{x}_{j}$

Hard / Crisp Clustering

\rightarrow elements in each cluster C_{j} should be as homogeneous as possible!
\rightarrow find partition $C=\left(C_{1}, \ldots, C_{K}\right)$ with $D(C)=\sum_{j=1}^{K} \sum_{i \in C_{j}} d\left(x_{i}, \bar{x}_{j}\right)^{2} \rightarrow \min !$

Definition

A partition C^{*} is optimal if

$$
D\left(C^{*}\right)=\min \{D(C): C \in P(\mathrm{~N}, K)\}
$$

where $P(\mathrm{~N}, K)$ denotes all partitions of N elements in K clusters.

Theorem

$\min _{C \in P(\mathrm{~N}, K)} D(C)=\max _{C \in P(\mathrm{~N}, K)} \sum_{j=1}^{\mathrm{N}}\left|C_{j}\right| \cdot\left\|\bar{x}_{j}-\bar{x}\right\|$
where \bar{x} is the mean of all x.

Crisp K-Means Clustering

$\forall k=1, \ldots, K$: set $C_{k}=\emptyset$
$\forall x \in\left\{x_{1}, \ldots, x_{N}\right\}$: assign x to some cluster C_{k}
set $t=0$ and $D^{(t)}=\infty$
repeat

$$
\begin{aligned}
& t=t+1 \\
& \forall k=1, \ldots, K: \bar{x}_{k}=\frac{1}{\left|C_{k}\right|} \sum_{x \in C_{k}} x
\end{aligned}
$$

$$
\forall i=1, \ldots, N: d_{i k}=d\left(x_{i}, \bar{x}_{k}\right) \quad \text { distance to center of cluster } k
$$

$$
\text { let } k^{*} \text { be such that } d_{i k^{*}}=\min \left\{d_{i k}: k=1, \ldots, K\right\}
$$

$$
\operatorname{assign} x_{i} \text { to } C_{k^{*}}
$$

$$
D^{(t)}=\sum_{k=1}^{K} \sum_{x \in C_{k}} d\left(x, \bar{x}_{k}\right)
$$

until $D^{(t-1)}-D^{(t)}<\varepsilon$

From Crisp to Fuzzy Clustering

objective for crisp clustering:
find partition $C=\left(C_{1}, \ldots, C_{K}\right)$ with $D(C)=\sum_{j=1}^{K} \sum_{i \in C_{j}} d\left(x_{i}, \bar{x}_{j}\right)^{2} \rightarrow \min$!
\rightarrow rewrite objective:
find partition $C=\left(C_{1}, \ldots, C_{K}\right)$ with $D(C)=\sum_{j=1}^{K} \sum_{i=1}^{N} u_{i j} \cdot d\left(x_{i}, \bar{x}_{j}\right)^{2} \rightarrow$ min! $\quad \begin{aligned} & \text { expresses membership } \longrightarrow u_{i j}= \begin{cases}1 & \text { if } x_{i} \in C_{j} \\ 0 & \text { otherwise }\end{cases} \end{aligned}$
objective for fuzzy clustering:
find partition $C=\left(C_{1}, \ldots, C_{K}\right)$ with $D(C)=\sum_{j=1}^{K} \sum_{i=1}^{N} u_{i j}^{m} \cdot d\left(x_{i}, \bar{x}_{j}\right)^{2} \rightarrow \min$!

$$
u_{i j} \in[0,1] \subset \mathbb{R}, m>1
$$

Fuzzy K-Means Clustering

find partition $C=\left(C_{1}, \ldots, C_{K}\right)$ with $D(C)=\sum_{j=1}^{K} \sum_{i=1}^{N} u_{i j}^{m} \cdot d\left(x_{i}, \bar{x}_{j}\right)^{2} \rightarrow \min$! where
$u_{i j} \in[0,1] \subset \mathbb{R}$ denotes membership of x_{i} to cluster C_{j}
$m>1$ denotes a fixed fuzzifier (controls / affects membership function)
subject to

$$
\begin{array}{r}
\sum_{j=1}^{K} u_{i j}=1 \quad \forall i=1, \ldots, N \\
0<\sum_{i=1}^{N} u_{i j}<N \quad \forall j=1, \ldots, K
\end{array}
$$

$$
\begin{array}{|l}
\hline \text { each } x_{i} \text { distributes membership } \\
\text { completely over clusters } C_{1}, \ldots, C_{K} \\
\rightarrow \text { normalization } \\
\hline \hline \text { at least one element belongs } \\
\text { to some extent to a certain cluster, } \\
\text { but not all elements to a single cluster } \\
\hline
\end{array}
$$

Fuzzy K-Means Clustering

two questions:

(a) how to define and calculate centers \bar{x}_{j} ?
(b) how to obtain optimal memberships $u_{i j}$?
ad a) let $d\left(x_{i}, \bar{x}_{j}\right)=\left\|x_{i}-\bar{x}_{j}\right\|_{2}$

$$
\begin{aligned}
& \frac{d}{d \bar{x}_{j}} \sum_{i=1}^{N} u_{i j}^{m} \cdot\left(x_{i}-\bar{x}_{j}\right)^{\prime}\left(x_{i}-\bar{x}_{j}\right)=-2 \sum_{i=1}^{N} u_{i j}^{m} \cdot\left(x_{i}-\bar{x}_{j}\right) \stackrel{!}{=} 0 \\
& \Leftrightarrow \sum_{i=1}^{N} u_{i j}^{m} x_{i} \stackrel{!}{=} \sum_{i=1}^{N} u_{i j}^{m} \bar{x}_{j} \quad \Leftrightarrow \quad \bar{x}_{j}=\frac{\sum_{i=1}^{N} u_{i j}^{m} x_{i}}{\sum_{i=1}^{N} u_{i j}^{m}}
\end{aligned}
$$

\rightarrow weighted mean!

Fuzzy K-Means Clustering

Lecture 09

ad b) let $d_{i j}:=d\left(x_{i}, \bar{x}_{j}\right)=\left\|x_{i}-\bar{x}_{j}\right\|_{2}$
apply Lagrange multiplier method:

without constraints $\rightarrow u_{i j}^{*}=0$

$$
u_{i j}^{*}=\left(\frac{\lambda_{i}}{m \cdot d_{i j}^{2}}\right)^{\frac{1}{m-1}}
$$

$$
\begin{aligned}
\sum_{j=1}^{K} u_{i j}=\sum_{j=1}^{K}\left(\frac{\lambda_{i}}{m \cdot d_{i j}^{2}}\right)^{\frac{1}{m-1}} & =\sum_{j=1}^{K} \frac{\lambda_{i}^{\frac{1}{q}}}{\left(m \cdot d_{i j}^{2}\right)^{\frac{1}{q}}}
\end{aligned}=\lambda_{i}^{\frac{1}{q}} \sum_{j=1}^{K} \frac{1}{\left(m \cdot d_{i j}^{2}\right)^{\frac{1}{q}}} \stackrel{!}{=} 1 \underbrace{\operatorname{set} q}=m-1 \quad \Rightarrow \lambda_{i}^{*}=\left[\sum_{k=1}^{K} \frac{1}{\left(m \cdot d_{i k}^{2}\right)^{\frac{1}{q}}}\right]^{-q}
$$

Fuzzy K-Means Clustering

after insertion:
$u_{i j}^{*}=\left(\frac{1}{m \cdot d_{i j}^{2}}\left[\frac{1}{\sum_{k=1}^{K}\left(\frac{1}{m \cdot d_{i k}^{2}}\right)^{\frac{1}{m-1}}}\right]^{m-1}\right)^{\frac{1}{m-1}}$

$$
=\left[\sum_{k=1}^{K}\left(\frac{d_{i j}}{d_{i k}}\right)^{\frac{2}{m-1}}\right]^{-1}
$$

choose $K \in \mathbb{N}$ and $m>1$
choose $u_{i j}$ at random (obeying constraints) repeat
$\forall j=1, \ldots, K$: calculate centers \bar{x}_{j}
$\forall i=1, \ldots, N$:
let $J_{i}=\left\{j: x_{i}=\bar{x}_{j}\right\}$
if $J_{i}=\emptyset$ determine memberships $u_{i j}$ else choose $u_{i j}$ such that $\sum_{j \in J_{i}} u_{i j}=1$ and $u_{i j}=0$ for $j \notin J_{i}$

problems:

- choice of K
calculate quality measure for each \#cluster; then choose best
- choice of m
try some values;
typical: $m=2$;
use interval \rightarrow fuzzy type-2 until $D\left(C^{(t)}\right)-D\left(C^{(t+1)}\right)<\varepsilon$ or $t=t_{\max }$

Example: Special Case $\left|\mathrm{J}_{\mathrm{i}}\right|>1$

$\mathrm{u}_{\mathrm{ij}}=1 /\left|\mathrm{J}_{\mathrm{i}}\right|$ for $\mathrm{j} \in \mathrm{J}_{\mathrm{i}}$ appears plausible
but: different values algorithmically better
\rightarrow cluster centers more likely to separate again (\rightarrow tiny randomization?)

Measures for Cluster Quality

- Partition Coefficient
$\operatorname{PC}\left(C_{1}, \ldots, C_{K}\right)=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{K} u_{i j}^{2}$
("larger is better")
maximum if $u_{i j} \in\{0,1\} \rightarrow$ crisp partition minimum if $u_{i j}=\frac{1}{K} \quad \rightarrow$ entirely fuzzy

$$
\} \quad \frac{1}{K} \leq \mathrm{PC}\left(C_{1}, \ldots, C_{K}\right) \leq 1
$$

- Partition Entropy
$\operatorname{PE}\left(C_{1}, \ldots, C_{K}\right)=-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{K} u_{i j} \cdot \log _{2}\left(u_{i j}\right) \quad$ ("smaller is better")
$\left.\begin{array}{l}\text { maximum if } u_{i j}=\frac{1}{K} \quad \rightarrow \text { entirely fuzzy } \\ \text { minimum if } u_{i j} \in\{0,1\} \rightarrow \text { crisp partition }\end{array}\right\} 0 \leq \operatorname{PE}\left(C_{1}, \ldots, C_{K}\right) \leq \log _{2}(K)$

