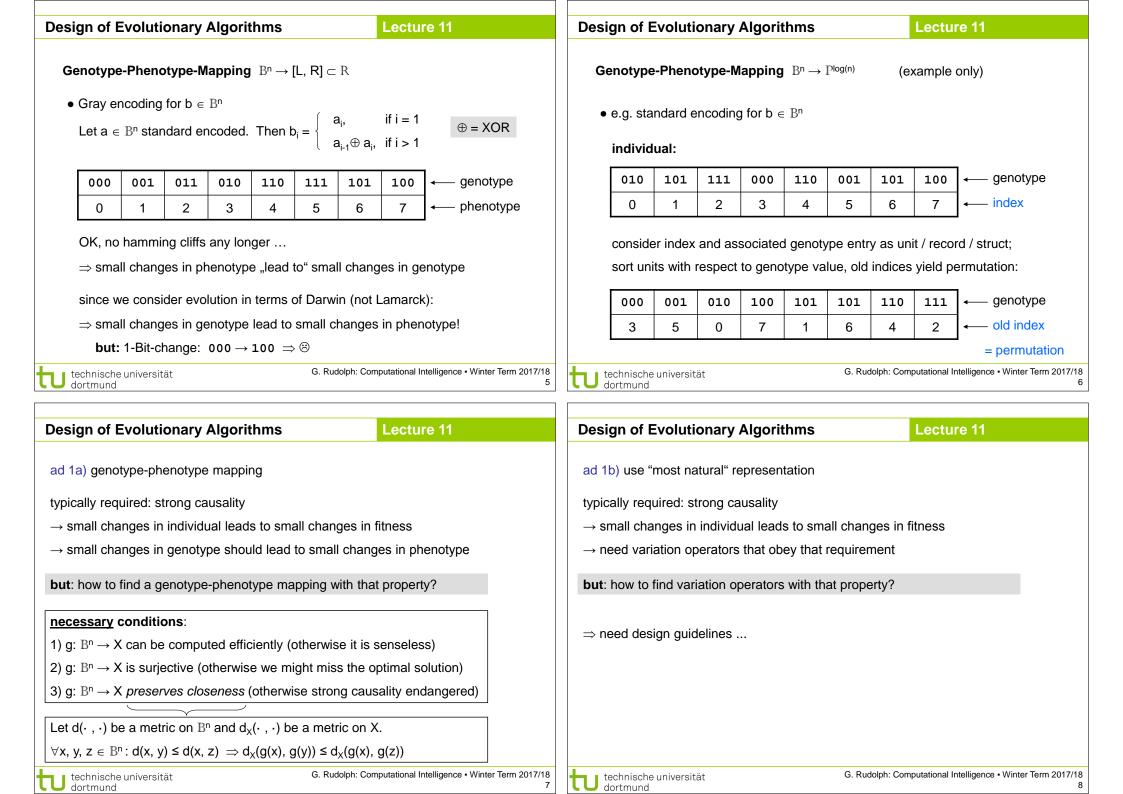
technische universität dortmund	Design of Evolutionary Algorithms Lecture 11
	Three tasks:
	1. Choice of an appropriate problem representation.
	2. Choice / design of variation operators acting in problem representation.
Computational Intelligence	3. Choice of strategy parameters (includes initialization).
Winter Term 2017/18	
	ad 1) different "schools":
	(a) operate on binary representation and define genotype/phenotype mapping
	+ can use standard algorithm
Prof. Dr. Günter Rudolph	 mapping may induce unintentional bias in search
Lehrstuhl für Algorithm Engineering (LS 11)	(b) no doctrine: use "most natural" representation
Fakultät für Informatik	- must design variation operators for specific representation
TU Dortmund	+ if design done properly then no bias in search
	G. Rudolph: Computational Intelligence • Winter Term 2017/18
	technische universität G. Rudolph: Computational Intelligence • Winter Term 2017/18 dortmund 2
Design of Evolutionary Algorithms Lecture 11	Design of Evolutionary Algorithms Lecture 11
ad 1a) genotype-phenotype mapping	Genotype-Phenotype-Mapping $B^n \rightarrow [L, R] \subset R$
original problem f: $X \rightarrow \mathbb{R}^d$	• Standard encoding for $b \in B^n$
scenario: no standard algorithm for search space X available	
	$x = L + \frac{R - L}{2^n - 1} \sum_{i=0}^{n-1} b_{n-i} 2^i$
f b Dd	$2^n - 1 \sum_{i=0}^{2^n-1} 2^{n-i-1}$
$X \longrightarrow \mathbb{R}^d$	→ Problem: <i>hamming cliffs</i>
9	000 001 010 011 100 101 110 111 - genotype
• standard EA performs variation on binary strings $b \in B^n$	0 1 2 3 4 5 6 7 ← phenotype
• fitness evaluation of individual b via $(f \circ g)(b) = f(g(b))$	$ \qquad \backslash / \backslash / \backslash / \backslash / \land / \land / \land / \land / \land / \land /$
where g: $\mathbb{B}^n \to X$ is genotype-phenotype mapping	1 Bit 2 Bit 1 Bit 3 Bit 1 Bit 2 Bit 1 Bit $L = 0, R = 7$
 selection operation independent from representation 	↑ n = 3 Hamming cliff
G. Rudolph: Computational Intelligence • Winter Term 2017/18	G. Rudolph: Computational Intelligence • Winter Term 2017/18
dortmund 3	U dortmund



	Lecture 11		Design of Evolutionary Algorithms	Lecture 11	
ad 2) design guidelines for variation operator	S		ad 2) design guidelines for variation or	perators in practice	
 a) reachability every x ∈ X should be reachable from arbitra after finite number of repeated variations with b) unbiasedness unless having gathered knowledge about provariation operator should not favor particular ⇒ formally: maximum entropy principle c) control variation operator should have parameters af known from theory: weaken variation strength 	blem subsets of solutions	m 0	binary search space $X = B^n$ variation by k-point or uniform crossover at a) reachability : regardless of the output of crossover we can move from $x \in B^n$ to $y \in B^n$ in 1 $p(x, y) = p_m^{H(x,y)} (1 - p_m)^{n-1}$ where H(x,y) is Hamming distance betwee Since min{ $p(x,y): x, y \in B^n } = \delta > 0$	step with probability -H(x,y) > 0 ween x and y.	
dortmund	udolph: Computational Intelligence • Winter Term	9	U technische universität dortmund	G. Rudolph: Computational Intelligence • W	/inter Term 2017/
dortmund		9	U dortmund		inter Term 2017/
Design of Evolutionary Algorithms	Lecture 11	9	Oesign of Evolutionary Algorithms Formally: Definition:	Lecture 11	
Design of Evolutionary Algorithms b) <i>unbiasedness</i>	Lecture 11	9	Design of Evolutionary Algorithms	Lecture 11 <i>i</i> th $p_k = P\{X = x_k\}$ for some indefinite	
 Design of Evolutionary Algorithms b) <i>unbiasedness</i> don't prefer any direction or subset of points wit ⇒ use maximum entropy distribution for sampli 	Lecture 11	9	Design of Evolutionary Algorithms Formally: Definition: Let X be discrete random variable (r.v.) w The quantity $H(X) = -\sum_{k \in K}$ is called the <i>entropy of the distribution</i>	Lecture 11 with $p_k = P\{X = x_k\}$ for some indep $p_k \log p_k$	ex set K.
Design of Evolutionary Algorithms b) <i>unbiasedness</i> don't prefer any direction or subset of points wit	Lecture 11 hout reason	9	Design of Evolutionary Algorithms Formally: Definition: Let X be discrete random variable (r.v.) w The quantity $H(X) = -\sum_{k \in K}$	Lecture 11 with $p_k = P\{X = x_k\}$ for some inder $p_k \log p_k$ of X. If X is a continuous r.v. with	ex set K.

Excursion: Maximum Entropy Distributions Lecture 11

Excursion: Maximum Entropy Distributions

Lecture 11

Knowledge available:

Discrete distribution with support { $x_1, x_2, ..., x_n$ } with $x_1 < x_2 < ..., x_n < \infty$

$$p_k = \mathsf{P}\{X = x_k\}$$

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right)$$

technische universität
dortmund
G. Rudolph:

G. Rudolph: Computational Intelligence • Winter Term 2017/18 13

Excursion: Maximum Entropy Distributions

Lecture 11

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with $p_k = P \{ X = k \}$ and E[X] = v

 \Rightarrow leads to nonlinear constrained optimization problem:

$$\begin{aligned} &-\sum_{k=1}^{n} p_k \log p_k \quad \rightarrow \max! \\ &\text{s.t.} \quad \sum_{k=1}^{n} p_k = 1 \quad \text{and} \quad \sum_{k=1}^{n} k p_k = \nu \end{aligned}$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

technische universität dortmund

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right)$$

partial derivatives:

$$\frac{\partial L(p,a)}{\partial p_k} = -1 - \log p_k + a \stackrel{!}{=} 0 \qquad \Rightarrow p_k \stackrel{!}{=} e^{a-1}$$

$$\frac{\partial L(p,a)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0 \qquad p_k = \frac{1}{n}$$

$$\Rightarrow \sum_{k=1}^n p_k = \sum_{k=1}^n e^{a-1} = n e^{a-1} \stackrel{!}{=} 1 \quad \Leftrightarrow \quad e^{a-1} = \frac{1}{n}$$

$$\lim_{k \to \infty} \frac{1}{14}$$

Excursion: Maximum Entropy Distributions

Lecture 11

$$L(p,a,b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

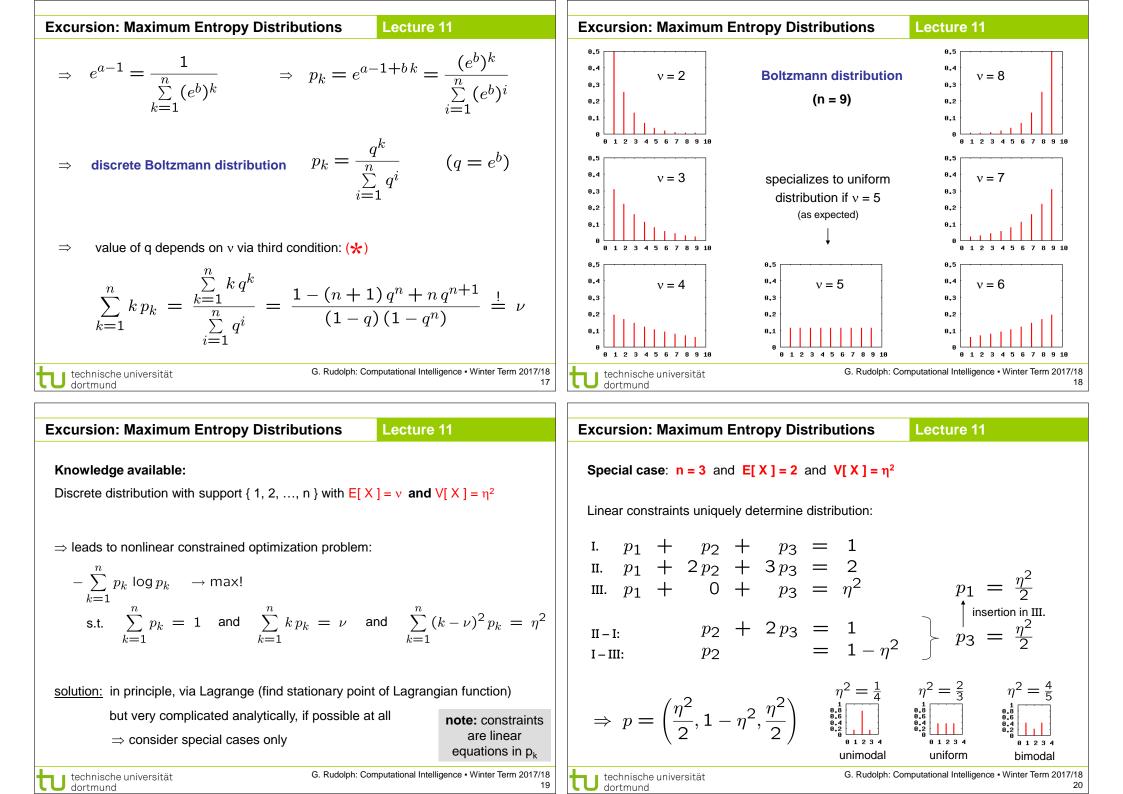
partial derivatives:

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=1}^n k p_k - \nu \stackrel{!}{=} 0 \qquad \sum_{k=1}^n p_k = e^{a-1} \sum_{k=1}^n (e^b)^k \stackrel{!}{=} 1$$

(continued on next slide)



Lecture 11 **Excursion: Maximum Entropy Distributions**

Knowledge available:

Discrete distribution with unbounded support { 0, 1, 2, ... } and E[X] = v

 \Rightarrow leads to <u>infinite-dimensional</u> nonlinear constrained optimization problem:

$$\begin{aligned} &-\sum_{k=0}^{\infty} p_k \log p_k \quad \to \max! \\ &\text{s.t.} \quad \sum_{k=0}^{\infty} p_k = 1 \qquad \text{and} \qquad \sum_{k=0}^{\infty} k p_k = \nu \end{aligned}$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

technische universität dortmund

_

igence • Winter Term 2017/18 21 **Excursion: Maximum Entropy Distributions**

Lecture 11

$$L(p,a,b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

partial derivatives:

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=0}^{\infty} p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=0}^{\infty} k p_k - \nu \stackrel{!}{=} 0 \qquad \qquad \sum_{k=0}^{\infty} p_k = e^{a-1} \sum_{k=0}^{\infty} (e^b)^k \stackrel{!}{=} 1$$
(continued on next slide)
(continued on next slide)
(continued on next slide)
(continued on next slide)

Excursion: Maximum Entropy Distributions

$$\Rightarrow e^{a-1} = \frac{1}{\sum_{k=0}^{\infty} (e^b)^k} \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=0}^{\infty} (e^b)^i}$$
set $q = e^b$ and insists that $q < 1 \Rightarrow \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$ insert

$$\Rightarrow p_k = (1-q) q^k \text{ for } k = 0, 1, 2, \dots \text{ geometrical distribution}$$
it remains to specify q; to proceed recall that $\sum_{k=0}^{\infty} k q^k = \frac{q}{(1-q)^2}$
Cutechnische universität G. Rudolph: Computational Intelligence - Winter Term 2017/18
 $a = 2$

Excur	sion: Maximum Entropy Distributions Lecture 11
\Rightarrow	value of q depends on v via third condition: (\bigstar)
	$\sum_{k=0}^{\infty} k p_k = \frac{\sum_{k=0}^{\infty} k q^k}{\sum_{i=0}^{\infty} q^i} = \frac{q}{1-q} \stackrel{!}{=} \nu$
⇒	$q = \frac{\nu}{\nu+1} = 1 - \frac{1}{\nu+1}$
\Rightarrow	$p_k = \frac{1}{\nu+1} \left(1 - \frac{1}{\nu+1} \right)^k$
teck	chnische universität G. Rudolph: Computational Intelligence • Winter Term 2017,

