

Computational Intelligence

Winter Term 2017/18

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Three tasks:

- 1. Choice of an appropriate problem representation.
- 2. Choice / design of variation operators acting in problem representation.
- 3. Choice of strategy parameters (includes initialization).

- ad 1) different "schools":
 - (a) operate on binary representation and define genotype/phenotype mapping
 - + can use standard algorithm
 - mapping may induce unintentional bias in search

(b) no doctrine: use "most natural" representation

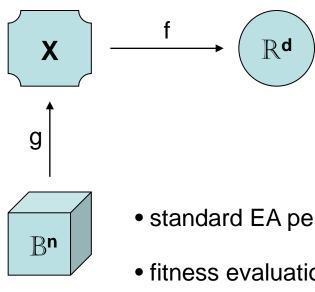
- must design variation operators for specific representation
- + if design done properly then no bias in search

Design of Evolutionary Algorithms

ad 1a) genotype-phenotype mapping

original problem f: $X \to \mathbb{R}^d$

scenario: no standard algorithm for search space X available



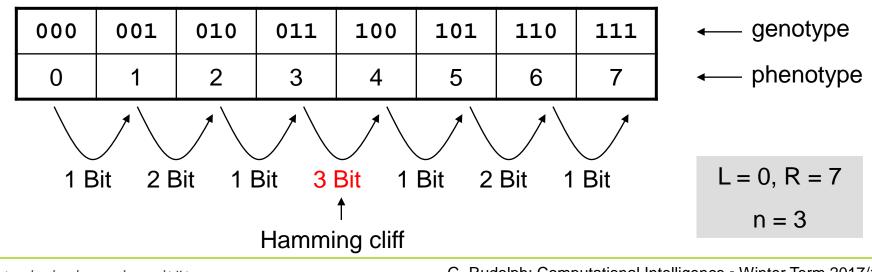
- \bullet standard EA performs variation on binary strings $b \in \mathbb{B}^n$
- fitness evaluation of individual b via $(f \circ g)(b) = f(g(b))$ where g: $\mathbb{B}^n \to X$ is genotype-phenotype mapping
- selection operation independent from representation

Genotype-Phenotype-Mapping $\mathbb{B}^n \to [L, R] \subset \mathbb{R}$

• Standard encoding for $b \in \mathbb{B}^n$

$$x = L + \frac{R - L}{2^n - 1} \sum_{i=0}^{n-1} b_{n-i} 2^i$$

 \rightarrow Problem: hamming cliffs



G. Rudolph: Computational Intelligence • Winter Term 2017/18

Genotype-Phenotype-Mapping $\mathbb{B}^n \to [L, R] \subset \mathbb{R}$

 \bullet Gray encoding for $b \in \mathbb{B}^n$

Let $a \in \mathbb{B}^n$ standard encoded. Then $b_i = \begin{cases} a_i, & \text{if } i = 1 \\ a_{i-1} \oplus a_i, & \text{if } i > 1 \end{cases} \oplus = XOR$

000	001	011	010	110	111	101	100	← genotype
0	1	2	3	4	5	6	7	phenotype

OK, no hamming cliffs any longer ...

 \Rightarrow small changes in phenotype "lead to" small changes in genotype

since we consider evolution in terms of Darwin (not Lamarck):

 \Rightarrow small changes in genotype lead to small changes in phenotype!

but: 1-Bit-change: $000 \rightarrow 100 \Rightarrow \bigotimes$

Genotype-Phenotype-Mapping $\mathbb{B}^n \to \mathbb{P}^{\log(n)}$ (example only)

 \bullet e.g. standard encoding for $b \in \mathbb{B}^n$

individual:

01	0	101	111	000	110	001	101	100	← genotype
0		1	2	3	4	5	6	7	← index

consider index and associated genotype entry as unit / record / struct;

sort units with respect to genotype value, old indices yield permutation:

000	001	010	100	101	101	110	111	← genotype
3	5	0	7	1	6	4	2	old index

= permutation

ad 1a) genotype-phenotype mapping

typically required: strong causality

- \rightarrow small changes in individual leads to small changes in fitness
- \rightarrow small changes in genotype should lead to small changes in phenotype

but: how to find a genotype-phenotype mapping with that property?

necessary conditions:

- 1) g: $\mathbb{B}^n \to X$ can be computed efficiently (otherwise it is senseless)
- 2) g: $\mathbb{B}^n \to X$ is surjective (otherwise we might miss the optimal solution)
- 3) g: $\mathbb{B}^n \to X$ preserves closeness (otherwise strong causality endangered)

Let $d(\cdot, \cdot)$ be a metric on \mathbb{B}^n and $d_X(\cdot, \cdot)$ be a metric on X.

 $\forall x, \, y, \, z \, \in \, \mathbb{B}^n \colon d(x, \, y) \leq d(x, \, z) \, \Rightarrow d_X(g(x), \, g(y)) \leq d_X(g(x), \, g(z))$

ad 1b) use "most natural" representation

typically required: strong causality

- \rightarrow small changes in individual leads to small changes in fitness
- \rightarrow need variation operators that obey that requirement

but: how to find variation operators with that property?

 \Rightarrow need design guidelines ...

ad 2) design guidelines for variation operators

a) reachability

every $x \in X$ should be reachable from arbitrary $x_0 \in X$ after finite number of repeated variations with positive probability bounded from 0

b) unbiasedness

unless having gathered knowledge about problem variation operator should not favor particular subsets of solutions \Rightarrow formally: <u>maximum entropy principle</u>

c) control

variation operator should have parameters affecting shape of distributions; known from theory: weaken variation strength when approaching optimum

ad 2) design guidelines for variation operators in practice

binary search space $X = \mathbb{B}^n$

variation by k-point or uniform crossover and subsequent mutation

a) *reachability*:

regardless of the output of crossover we can move from $x \in \mathbb{B}^n$ to $y \in \mathbb{B}^n$ in 1 step with probability

$$p(x,y) = p_m^{H(x,y)} (1 - p_m)^{n - H(x,y)} > 0$$

where H(x,y) is Hamming distance between x and y.

Since $\min\{p(x,y): x, y \in \mathbb{B}^n\} = \delta > 0$ we are done.

b) **unbiasedness**

don't prefer any direction or subset of points without reason

 \Rightarrow use maximum entropy distribution for sampling!

properties:

- distributes probability mass as uniform as possible
- additional knowledge can be included as constraints:
 → under given constraints sample as uniform as possible

Formally:

Definition:

Let X be discrete random variable (r.v.) with $p_k = P\{X = x_k\}$ for some index set K. The quantity

$$H(X) = -\sum_{k \in K} p_k \log p_k$$

is called the *entropy of the distribution* of X. If X is a continuous r.v. with p.d.f. $f_X(\cdot)$ then the entropy is given by

$$H(X) = -\int_{-\infty}^{\infty} f_X(x) \log f_X(x) dx$$

The distribution of a random variable X for which H(X) is maximal is termed a *maximum entropy distribution*.

Knowledge available:

Discrete distribution with support { $x_1, x_2, ..., x_n$ } with $x_1 < x_2 < ..., x_n < \infty$

$$p_k = \mathsf{P}\{X = x_k\}$$

Lecture 11

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \rightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1$$

solution: via Lagrange (find stationary point of Lagrangian function)

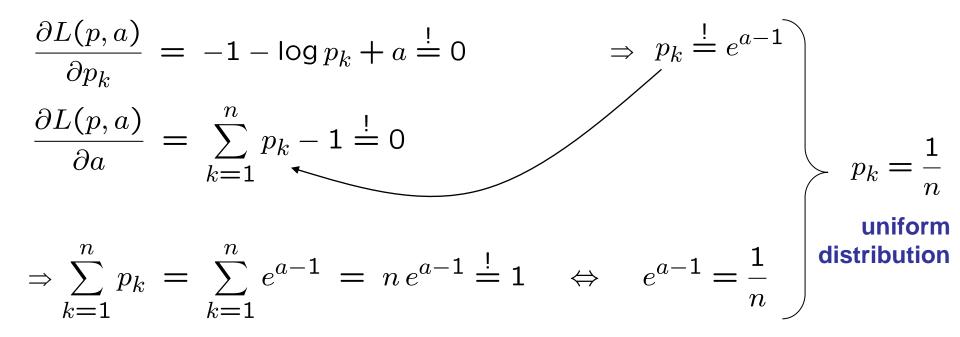
$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right)$$

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2017/18 13

Lecture 11

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right)$$

partial derivatives:



Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with $p_k = P \{ X = k \}$ and E[X] = v

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \rightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1 \quad \text{and} \quad \sum_{k=1}^{n} k p_k = \nu$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p,a,b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu\right)$$

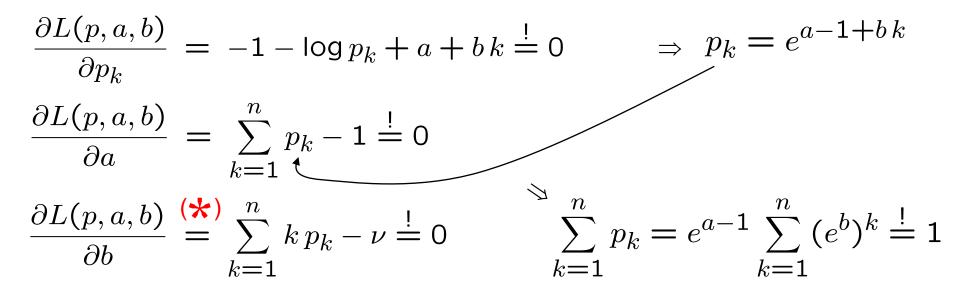
technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2017/18

Lecture 11

Lecture 11

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

partial derivatives:



(continued on next slide)

Lecture 11

$$\Rightarrow e^{a-1} = \frac{1}{\sum_{k=1}^{n} (e^b)^k} \qquad \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=1}^{n} (e^b)^i}$$

⇒ discrete Boltzmann distribution

$$p_k = \frac{q^k}{\sum\limits_{i=1}^n q^i} \qquad (q = e^b)$$

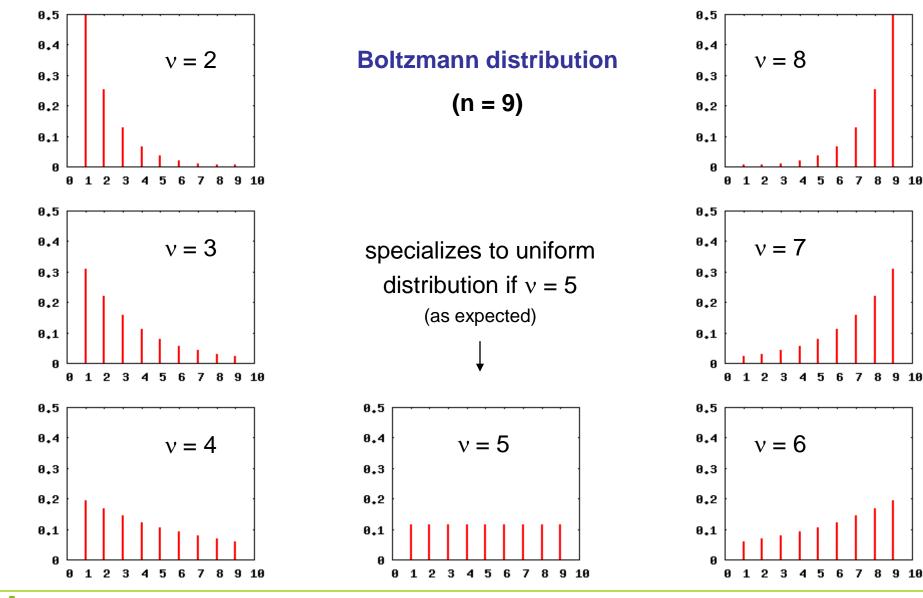
 \Rightarrow value of q depends on v via third condition: (\bigstar)

$$\sum_{k=1}^{n} k p_k = \frac{\sum_{k=1}^{n} k q^k}{\sum_{i=1}^{n} q^i} = \frac{1 - (n+1) q^n + n q^{n+1}}{(1-q) (1-q^n)} \stackrel{!}{=} \nu$$

Lecture 11

8 9 10

8 9 10



technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2017/18 18

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with E[X] = v and V[X] = η^2

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1 \quad \text{and} \quad \sum_{k=1}^{n} k p_k = \nu \quad \text{and} \quad \sum_{k=1}^{n} (k-\nu)^2 p_k = \eta^2$$

solution:in principle, via Lagrange (find stationary point of Lagrangian function)but very complicated analytically, if possible at allnote: constraints
are linear
equations in p_k

Lecture 11

Lecture 11

Special case: n = 3 and E[X] = 2 and $V[X] = \eta^2$

Linear constraints uniquely determine distribution:

I.
$$p_1 + p_2 + p_3 = 1$$

II. $p_1 + 2p_2 + 3p_3 = 2$
III. $p_1 + 0 + p_3 = \eta^2$
II. $p_1 + 0 + p_3 = \eta^2$
II. $p_2 + 2p_3 = 1$
 $p_3 = \frac{\eta^2}{2}$
 $p_3 = \frac{\eta^2}{2}$

U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2017/18 20

Knowledge available:

Discrete distribution with unbounded support { 0, 1, 2, ... } and E[X] = v

 \Rightarrow leads to <u>infinite-dimensional</u> nonlinear constrained optimization problem:

$$-\sum_{k=0}^{\infty} p_k \log p_k \to \max!$$

s.t.
$$\sum_{k=0}^{\infty} p_k = 1 \quad \text{and} \quad \sum_{k=0}^{\infty} k p_k = \nu$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p,a,b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

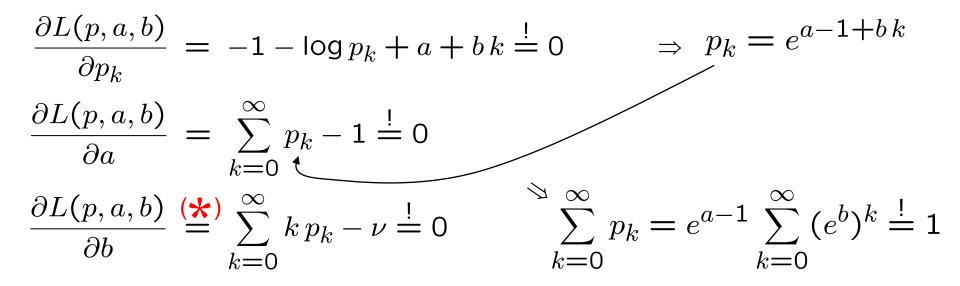
technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2017/18

Lecture 11

Lecture 11

$$L(p,a,b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

partial derivatives:



(continued on next slide)

Lecture 11

$$\Rightarrow e^{a-1} = \frac{1}{\sum_{k=0}^{\infty} (e^b)^k} \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=0}^{\infty} (e^b)^i}$$

set $q = e^b$ and insists that $q < 1 \Rightarrow \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$ insert

 $\Rightarrow p_k = (1 - q) q^k$ for k = 0, 1, 2, ... geometrical distribution

it remains to specify q; to proceed recall that

$$\sum_{k=0}^{\infty} k \, q^k = \frac{q}{(1-q)^2}$$

Lecture 11

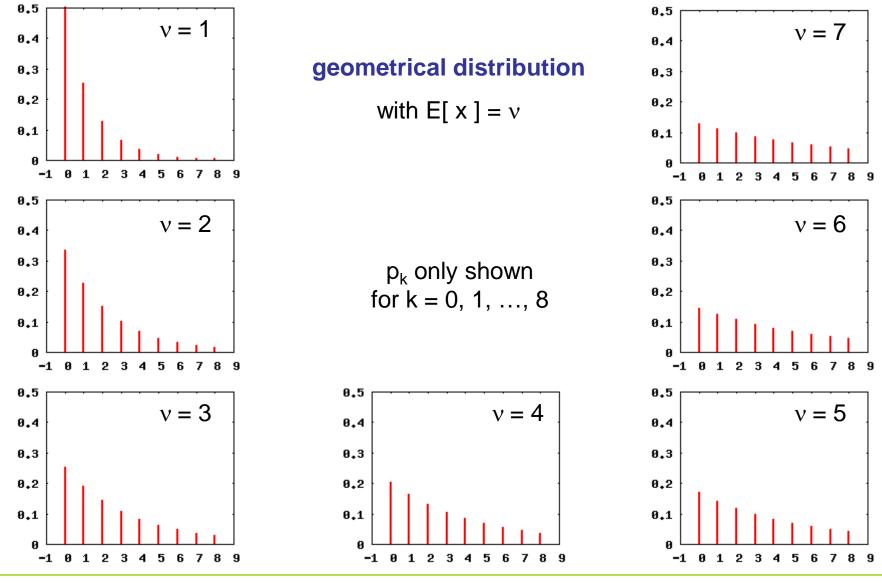
 \Rightarrow value of q depends on v via third condition: (*)

$$\sum_{k=0}^{\infty} k p_k = \frac{\sum_{k=0}^{\infty} k q^k}{\sum_{i=0}^{\infty} q^i} = \frac{q}{1-q} \stackrel{!}{=} \nu$$

$$\Rightarrow \quad q = \frac{\nu}{\nu+1} = 1 - \frac{1}{\nu+1}$$

$$\Rightarrow p_k = \frac{1}{\nu+1} \left(1 - \frac{1}{\nu+1} \right)^k$$

Lecture 11



technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2017/18 25

Overview:

support { 1, 2,, n }	\Rightarrow <i>discrete uniform</i> distribution
and require $E[X] = \theta$	\Rightarrow <i>Boltzmann</i> distribution
and require V[X] = η^2	\Rightarrow N.N. (not Binomial distribution)
support \mathbb{N}	\Rightarrow not defined!
and require $E[X] = \theta$	\Rightarrow geometrical distribution

distribution

and require V[X] = η^2 \Rightarrow ?

support \mathbb{Z}

 \Rightarrow not defined!

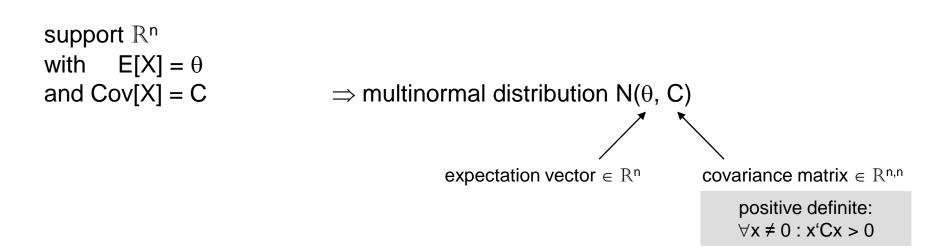
and require $E[|X|] = \theta$

- \Rightarrow *bi-geometrical* distribution (*discrete Laplace* distr.)
- and require $E[|X|^2] = \eta^2 \implies N.N.$ (*discrete Gaussian* distr.)

support [a,b] $\subset \mathbb{R}$ \Rightarrow uniform distribution

support \mathbb{R}^+ with $E[X] = \theta \implies$ Exponential distribution

support R with E[X] = θ , V[X] = $\eta^2 \implies$ normal / Gaussian distribution N(θ , η^2)



Lecture 11

for permutation distributions ?

 \rightarrow uniform distribution on all possible permutations

```
set v[j] = j for j = 1, 2, ..., n
for i = n to 1 step -1
    draw k uniformly at random from { 1, 2, ..., i }
    swap v[i] and v[k]
endfor
```

Guideline:

Only if you know something about the problem a priori or

if you have learnt something about the problem *during the search*

 \Rightarrow include that knowledge in search / mutation distribution (via constraints!)

Design of Evolutionary Algorithms

ad 2) design guidelines for variation operators in practice

integer search space $X = \mathbb{Z}^n$

- a) reachability
- b) unbiasedness
- c) control

- every recombination results in some $z \in \mathbb{Z}^n$
- mutation of z may then lead to any $z^* \in \mathbb{Z}^n$ with positive probability in one step

ad a) support of mutation should be \mathbb{Z}^n

ad b) need maximum entropy distribution over support \mathbb{Z}^n

ad c) control variability by parameter

 \rightarrow formulate as constraint of maximum entropy distribution

Lecture 11

 $X = \mathbb{Z}^n$

ad 2) design guidelines for variation operators in practice

task: find (symmetric) maximum entropy distribution over \mathbb{Z} with E[| Z |] = $\theta > 0$

 \Rightarrow need <u>analytic</u> solution of a ∞ -dimensional, nonlinear optimization problem with constraints!

~ ~

$$H(p) = -\sum_{k=-\infty}^{\infty} p_k \log p_k \longrightarrow \max!$$

$$p_k = p_{-k} \quad \forall k \in \mathbb{Z}, \qquad \text{(symmetry w.r.t. 0)}$$

$$\sum_{k=-\infty}^{\infty} p_k = 1, \qquad \text{(normalization)}$$

$$\sum_{k=-\infty}^{\infty} |k| p_k = \theta \qquad \text{(control "spread")}$$

$$p_k \ge 0 \quad \forall k \in \mathbb{Z}. \qquad \text{(nonnegativity)}$$

s.t.

result:

a random variable Z with support $\ensuremath{\mathbb{Z}}$ and probability distribution

$$p_k := P\{Z = k\} = \frac{q}{2-q} (1-q)^{|k|}, \ k \in \mathbb{Z}, \ q \in (0,1)$$

symmetric w.r.t. 0, unimodal, spread manageable by q and has max. entropy

generation of pseudo random numbers:

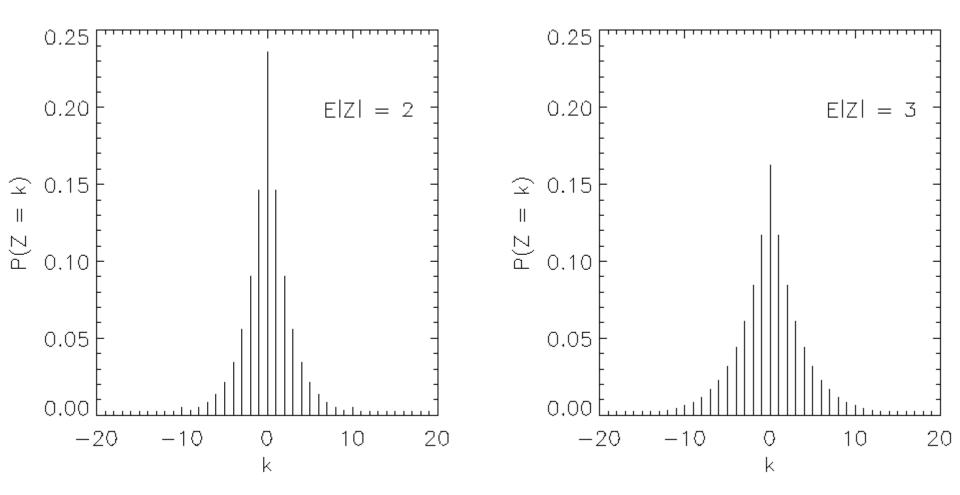
$$Z = G_1 - G_2$$

Lecture 11

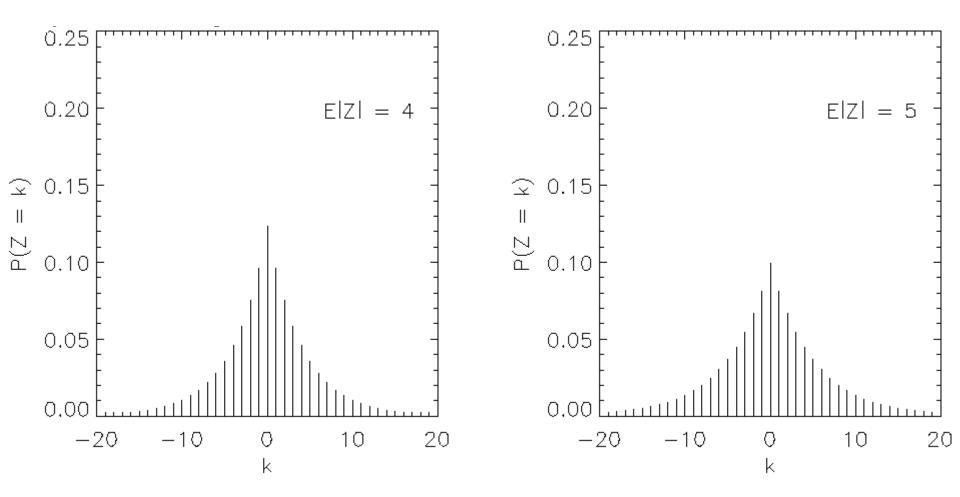
where

$$U_i \sim U(0,1) \Rightarrow G_i = \left\lfloor \frac{\log(1-U_i)}{\log(1-q)} \right\rfloor$$
, $i = 1, 2$

stocnastic independent!



G. Rudolph: Computational Intelligence • Winter Term 2017/18 32



technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2017/18 33

How to control the spread?

We must be able to adapt $q \in (0,1)$ for generating Z with variable $E|Z| = \theta$! self-adaptation of q in open interval (0,1) ?

 \longrightarrow make mean step size E[|Z|] adjustable!

$$E[|Z|] = \sum_{k=-\infty}^{\infty} |k| p_k = \theta = \frac{2(1-q)}{q(2-q)} \Leftrightarrow q = 1 - \frac{\theta}{(1+\theta^2)^{1/2}+1}$$

$$\in \mathbb{R}_+ \qquad \in (0,1)$$

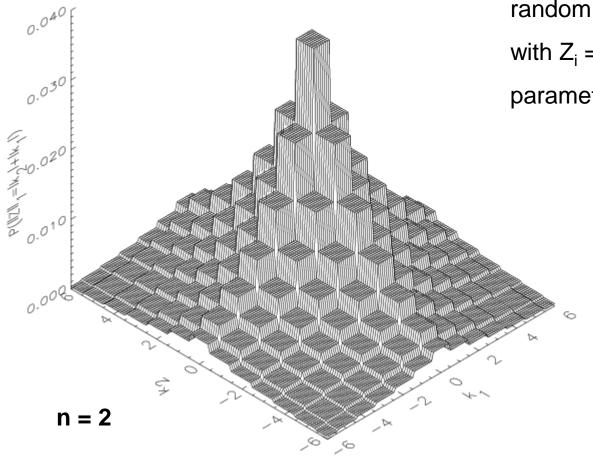
$$\rightarrow \theta \text{ adjustable by mutative self adaptation} \qquad \rightarrow \text{get q from } \theta$$

like mutative step size size control
of σ in EA with search space \mathbb{R}^n !

Lecture 11

Lecture 11

n - dimensional generalization



random vector $Z = (Z_1, Z_2, ..., Z_n)$ with $Z_i = G_{1,i} - G_{2,i}$ (stoch. indep.); parameter q for all G_{1i} , G_{2i} equal

Design of Evolutionary Algorithms

Lecture 11

n - dimensional generalization

$$P\{Z_i = k\} = \frac{q}{2-q} (1-q)^{|k|}$$

$$P\{Z_1 = k_1, Z_2 = k_2, \dots, Z_n = k_n\} = \prod_{i=1}^n P\{Z_i = k_i\} =$$

$$\left(\frac{q}{2-q}\right)^n \prod_{i=1}^n (1-q)^{|k_i|} = \left(\frac{q}{2-q}\right)^n (1-q)^{\sum_{i=1}^n |k_i|} \\ = \left(\frac{q}{2-q}\right)^n (1-q)^{||k||_1}.$$

 \Rightarrow n-dimensional distribution is symmetric w.r.t. ℓ_1 norm!

 \Rightarrow all random vectors with same step length have same probability!

How to control $E[||Z||_1]$?

$$E[||Z||_{1}] = E\left[\sum_{i=1}^{n} |Z_{i}|\right] = \sum_{i=1}^{n} E[|Z_{i}|] = n \cdot E[|Z_{1}|]$$

by def. linearity of E[·] identical distributions for Z_i
$$n \cdot E[|Z_{1}|] = n \cdot \frac{2(1-q)}{q(2-q)} \Leftrightarrow q = 1 - \frac{\theta/n}{(1+(\theta/n)^{2})^{1/2} + (\theta/n)^{2})^{1/2} + (\theta/n)^{2}}$$

self-adaptation calculate from θ

calculate from θ

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2017/18 37

1

Algorithm:

individual : $(x, \theta) \in \mathbb{Z}^n \times \mathbb{R}_+$

mutation

:
$$\theta^{(t+1)} = \theta^{(t)} \cdot \exp(N), \quad N \sim N(0, 1/n).$$

if $\theta^{(t+1)} < 1$ then $\theta_{t+1} = 1$

calculate new q for G_i from θ_{t+1}

$$\forall j = 1, \dots, n : X_j^{(t+1)} = X_j^{(t)} + (G_{1,j} - G_{2,j})$$

recombination : discrete (uniform crossover)

selection : (μ, λ) -selection

(Rudolph, PPSN 1994)

ad 2) design guidelines for variation operators in practice

<u>continuous search space</u> $X = \mathbb{R}^n$

- a) reachability
- b) unbiasedness
- c) control

 \Rightarrow leads to CMA-ES !

