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Design of Evolutionary Algorithms 

Three tasks: 

1. Choice of an appropriate problem representation. 

2. Choice / design of variation operators acting in problem representation. 

3. Choice of strategy parameters (includes initialization). 

ad 1) different “schools“: 

         (a) operate on binary representation and define genotype/phenotype mapping 
              + can use standard algorithm 
              – mapping may induce unintentional bias in search 
 

         (b) no doctrine: use “most natural” representation  
              – must design variation operators for specific representation 
              + if design done properly then no bias in search  
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Design of Evolutionary Algorithms 

ad 1a) genotype-phenotype mapping 

original problem  f: X → Rd   

scenario: no standard algorithm for search space X available 

Bn 

X Rd f 

g 

• standard EA performs variation on binary strings b ∈ Bn 

• fitness evaluation of individual b via (f ◦ g)(b) = f(g(b))  

  where g: Bn → X is genotype-phenotype mapping 

• selection operation independent from representation 
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Design of Evolutionary Algorithms 

Genotype-Phenotype-Mapping  Bn → [L, R] ⊂ R 

● Standard encoding for b ∈ Bn 

→ Problem: hamming cliffs 

000 001 010 011 100 101 110 111 

0 1 2 3 4 5 6 7 

L = 0, R = 7 

n = 3 

1 Bit 2 Bit 1 Bit 3 Bit 1 Bit 2 Bit 1 Bit 

Hamming cliff 

genotype 

phenotype 
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Design of Evolutionary Algorithms 

● Gray encoding for b ∈ Bn 

000 001 011 010 110 111 101 100 

0 1 2 3 4 5 6 7 

Let a ∈ Bn standard encoded.  Then bi =  
ai, if i = 1 

ai-1⊕ ai, if i > 1
  

⊕ = XOR 

genotype 

phenotype 

OK, no hamming cliffs any longer … 

⇒ small changes in phenotype „lead to“ small changes in genotype 

since we consider evolution in terms of Darwin (not Lamarck): 

⇒ small changes in genotype lead to small changes in phenotype! 

but: 1-Bit-change:  000 → 100 ⇒  

Genotype-Phenotype-Mapping  Bn → [L, R] ⊂ R 



Lecture 11 

G. Rudolph: Computational Intelligence ▪ Winter Term 2017/18 
6 

Design of Evolutionary Algorithms 

● e.g. standard encoding for b ∈ Bn 

010 101 111 000 110 001 101 100 

0 1 2 3 4 5 6 7 

genotype 

index  

Genotype-Phenotype-Mapping  Bn → Plog(n) 

individual: 

consider index and associated genotype entry as unit / record / struct; 

sort units with respect to genotype value, old indices yield permutation: 

000 001 010 100 101 101 110 111 

3 5 0 7 1 6 4 2 

genotype 

old index  

(example only) 

= permutation 
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Design of Evolutionary Algorithms 

ad 1a) genotype-phenotype mapping 

typically required: strong causality 

→ small changes in individual leads to small changes in fitness 

→ small changes in genotype should lead to small changes in phenotype 

but: how to find a genotype-phenotype mapping with that property? 

necessary conditions:  

1) g: Bn → X can be computed efficiently (otherwise it is senseless) 

2) g: Bn → X is surjective (otherwise we might miss the optimal solution) 

3) g: Bn → X preserves closeness (otherwise strong causality endangered) 

Let d(· , ·) be a metric on Bn and dX(· , ·) be a metric on X. 

∀x, y, z ∈ Bn : d(x, y) ≤ d(x, z)  ⇒ dX(g(x), g(y)) ≤ dX(g(x), g(z))  
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Design of Evolutionary Algorithms 

ad 1b) use “most natural“ representation 

but: how to find variation operators with that property? 

typically required: strong causality 

→ small changes in individual leads to small changes in fitness 

→ need variation operators that obey that requirement 

⇒ need design guidelines ... 
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Design of Evolutionary Algorithms 

ad 2) design guidelines for variation operators 

a) reachability 
 

every x 2 X should be reachable from arbitrary x0 ∈ X 
after finite number of repeated variations with positive probability bounded from 0 

b) unbiasedness 
 

unless having gathered knowledge about problem 
variation operator should not favor particular subsets of solutions 
⇒ formally: maximum entropy principle 

c) control 
 

variation operator should have parameters affecting shape of distributions; 
known from theory: weaken variation strength when approaching optimum 
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Design of Evolutionary Algorithms 

ad 2) design guidelines for variation operators in practice 

binary search space X = Bn 

variation by k-point or uniform crossover and subsequent mutation 

a) reachability: 
    regardless of the output of crossover 
    we can move from x ∈ Bn to y ∈ Bn in 1 step with probability 

where H(x,y) is Hamming distance between x and y. 

Since   min{ p(x,y): x,y ∈ Bn } = δ > 0   we are done. 
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Design of Evolutionary Algorithms 

b) unbiasedness 

don‘t prefer any direction or subset of points without reason 

⇒ use maximum entropy distribution for sampling! 

properties: 

- distributes probability mass as uniform as possible 

- additional knowledge can be included as constraints: 
  → under given constraints sample as uniform as possible 
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Design of Evolutionary Algorithms 

Definition: 

Let X be discrete random variable (r.v.) with pk = P{ X = xk } for some index set K. 
The quantity 

 
 

is called the entropy of the distribution of X. If X is a continuous r.v. with p.d.f. 
fX(¢) then the entropy is given by 
 

 
 

The distribution of a random variable X for which H(X) is maximal is termed a 
maximum entropy distribution.      ■ 

Formally: 
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Excursion: Maximum Entropy Distributions 

Knowledge available: 

Discrete distribution with support { x1, x2, … xn } with x1 < x2 < … xn < 1 

s.t. 

⇒ leads to nonlinear constrained optimization problem: 

solution: via Lagrange (find stationary point of Lagrangian function) 
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Excursion: Maximum Entropy Distributions 

partial derivatives: 

⇒ 

⇒ 

uniform 
distribution 
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Excursion: Maximum Entropy Distributions 

Knowledge available: 

Discrete distribution with support { 1, 2, …, n } with pk = P { X = k }   and   E[ X ] = ν 

s.t. 

⇒ leads to nonlinear constrained optimization problem: 

and  

solution: via Lagrange (find stationary point of Lagrangian function) 
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Excursion: Maximum Entropy Distributions 

partial derivatives: 

⇒ 

(continued on next slide) 

* (    ) 
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Excursion: Maximum Entropy Distributions 

⇒ ⇒ 

⇒ discrete Boltzmann distribution 

⇒ value of q depends on ν via third condition: * (    ) 
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Excursion: Maximum Entropy Distributions 

Boltzmann distribution 

(n = 9) 

ν = 2 

ν = 3 

ν = 4 

ν = 8 

ν = 7 

ν = 6 ν = 5 

specializes to uniform 
distribution if ν = 5  

(as expected) 
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Excursion: Maximum Entropy Distributions 

Knowledge available: 

Discrete distribution with support { 1, 2, …, n } with E[ X ] = ν  and V[ X ] = η2 

s.t. 

⇒ leads to nonlinear constrained optimization problem: 

and  and  

solution:  in principle, via Lagrange (find stationary point of Lagrangian function) 

but very complicated analytically, if possible at all 

⇒ consider special cases only 
note: constraints 

are linear 
equations in pk 
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Excursion: Maximum Entropy Distributions 

Special case:  n = 3  and  E[ X ] = 2  and  V[ X ] = η2 

Linear constraints uniquely determine distribution: 

I. 

II. 

III. 

II – I:  
I – III:  

insertion in III. 

unimodal uniform bimodal 
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Excursion: Maximum Entropy Distributions 

Knowledge available: 

Discrete distribution with unbounded support { 0, 1, 2, … } and  E[ X ] = ν 

s.t. 

⇒ leads to infinite-dimensional nonlinear constrained optimization problem: 

and  

solution: via Lagrange (find stationary point of Lagrangian function) 
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Excursion: Maximum Entropy Distributions 

⇒ 

(continued on next slide) 

partial derivatives: 

* (    ) 



Lecture 11 

G. Rudolph: Computational Intelligence ▪ Winter Term 2017/18 
23 

Excursion: Maximum Entropy Distributions 

⇒ ⇒ 

set  and insists that  ⇒ 
insert 

⇒ geometrical distribution for 

it remains to specify q;   to proceed recall that 
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Excursion: Maximum Entropy Distributions 

⇒ value of q depends on ν via third condition: * (    ) 

⇒ 

⇒ 
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Excursion: Maximum Entropy Distributions 

geometrical distribution 

with E[ x ] = ν 

pk only shown  
for k = 0, 1, …, 8 

ν = 1 

ν = 2 

ν = 3 ν = 4 ν = 5 

ν = 6 

ν = 7 
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Excursion: Maximum Entropy Distributions 

Overview: 

support { 1, 2, …, n }  ⇒ discrete uniform distribution 

and require E[X] = θ ⇒ Boltzmann distribution 

and require V[X] = η2 ⇒ N.N. (not Binomial distribution) 

support N  ⇒  not defined! 

and require E[X] = θ ⇒  geometrical distribution 

and require V[X] = η2 ⇒  ? 

support Z   ⇒  not defined! 

and require E[|X|] = θ ⇒  bi-geometrical distribution (discrete Laplace distr.) 

and require E[|X|2] = η2 ⇒  N.N. (discrete Gaussian distr.) 
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Excursion: Maximum Entropy Distributions 

support [a,b] ⊂ R   ⇒ uniform distribution 

support R+  with E[X] = θ ⇒ Exponential distribution 

support R   

with E[X] = θ, V[X] = η2 ⇒ normal / Gaussian distribution N(θ, η2) 

support Rn 

with     E[X] = θ 
and Cov[X] = C  ⇒ multinormal distribution N(θ, C) 

expectation vector ∈ Rn covariance matrix ∈ Rn,n 

positive definite:  
∀x ≠ 0 : x‘Cx > 0 
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Excursion: Maximum Entropy Distributions 

for permutation distributions ? 

Guideline: 

Only if you know something about the problem a priori or 

if you have learnt something about the problem during the search 

⇒ include that knowledge in search / mutation distribution (via constraints!) 

→ uniform distribution on all possible permutations 

set v[j] = j for j = 1, 2, ..., n 

for i = n to 1 step -1 

  draw k uniformly at random from { 1, 2, ..., i } 

  swap v[i] and v[k] 

endfor  

generates 
permutation 
uniformly at 
random in 
Θ(n) time 
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Design of Evolutionary Algorithms 

integer search space X = Zn 

ad 2) design guidelines for variation operators in practice 

a) reachability 

b) unbiasedness 

c) control 

ad a) support of mutation should be Zn 

ad b) need maximum entropy distribution over support Zn 

ad c) control variability by parameter 

         → formulate as constraint of maximum entropy distribution 

- every recombination results 
  in some z ∈ Zn  
- mutation of z may then lead 
  to any z* ∈ Zn with positive 
  probability in one step 



Lecture 11 

G. Rudolph: Computational Intelligence ▪ Winter Term 2017/18 
30 

X = Zn ad 2) design guidelines for variation operators in practice 

task: find (symmetric) maximum entropy distribution over Z with E[ | Z | ] = θ > 0  

⇒ need analytic solution of a 1-dimensional, nonlinear optimization problem  
     with constraints! 

s.t. 

max! 

(symmetry w.r.t. 0) 

(normalization) 

(control “spread“) 

(nonnegativity) 

Z , 

Z . 

Design of Evolutionary Algorithms 
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Design of Evolutionary Algorithms 

result: 

a random variable Z with support Z and probability distribution 

Z 

symmetric w.r.t. 0, unimodal, spread manageable by q and has max. entropy     ■ 

generation of pseudo random numbers: Z = G1 – G2 

where 

stochastic 
independent! 
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Design of Evolutionary Algorithms 

probability distributions for different mean step sizes E|Z| = θ 
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Design of Evolutionary Algorithms 

probability distributions for different mean step sizes E|Z| = θ 
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Design of Evolutionary Algorithms 

How to control the spread? 

make mean step size       adjustable!  

→ θ adjustable by mutative self adaptation 

∈ R+ ∈ (0,1) 

→ get q from θ 

We must be able to adapt q ∈ (0,1) for generating Z with variable E|Z| = θ  ! 

self-adaptation of q in open interval (0,1) ? 

like mutative step size size control 
of σ in EA with search space Rn ! 
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Design of Evolutionary Algorithms 

n - dimensional generalization 

n = 2 

random vector Z = (Z1, Z2, ... Zn) 

with Zi = G1,i – G2,i   (stoch. indep.); 

parameter q for all G1i, G2i equal 
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Design of Evolutionary Algorithms 

n - dimensional generalization 

⇒ n-dimensional distribution is symmetric w.r.t.   1 norm! 

⇒ all random vectors with same step length have same probability! 
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Design of Evolutionary Algorithms 

How to control E[ || Z ||1 ] ? 

by def. linearity of E[·] identical distributions for Zi 

= θ 
self-adaptation calculate from θ 
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Design of Evolutionary Algorithms 

(Rudolph, PPSN 1994) 

Algorithm: 
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Excursion: Maximum Entropy Distributions 

continuous search space X = Rn 

ad 2) design guidelines for variation operators in practice 

a) reachability 

b) unbiasedness 

c) control 

⇒  leads to CMA-ES ! 
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