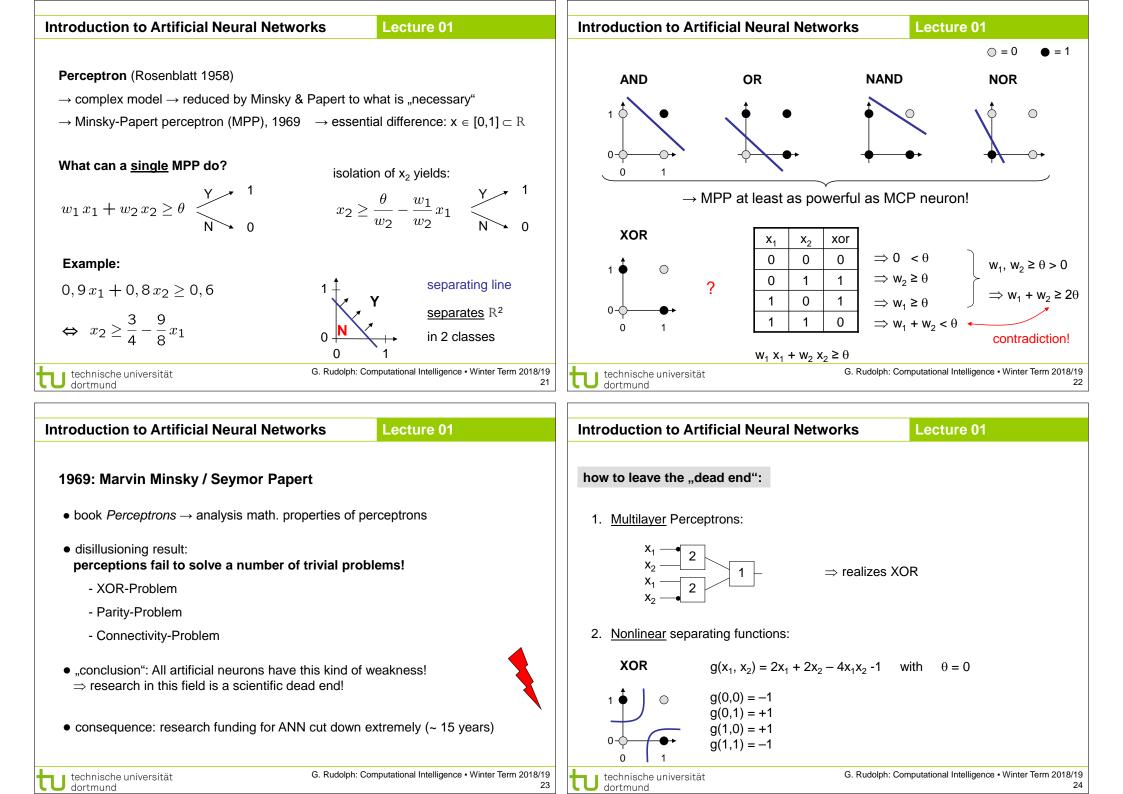
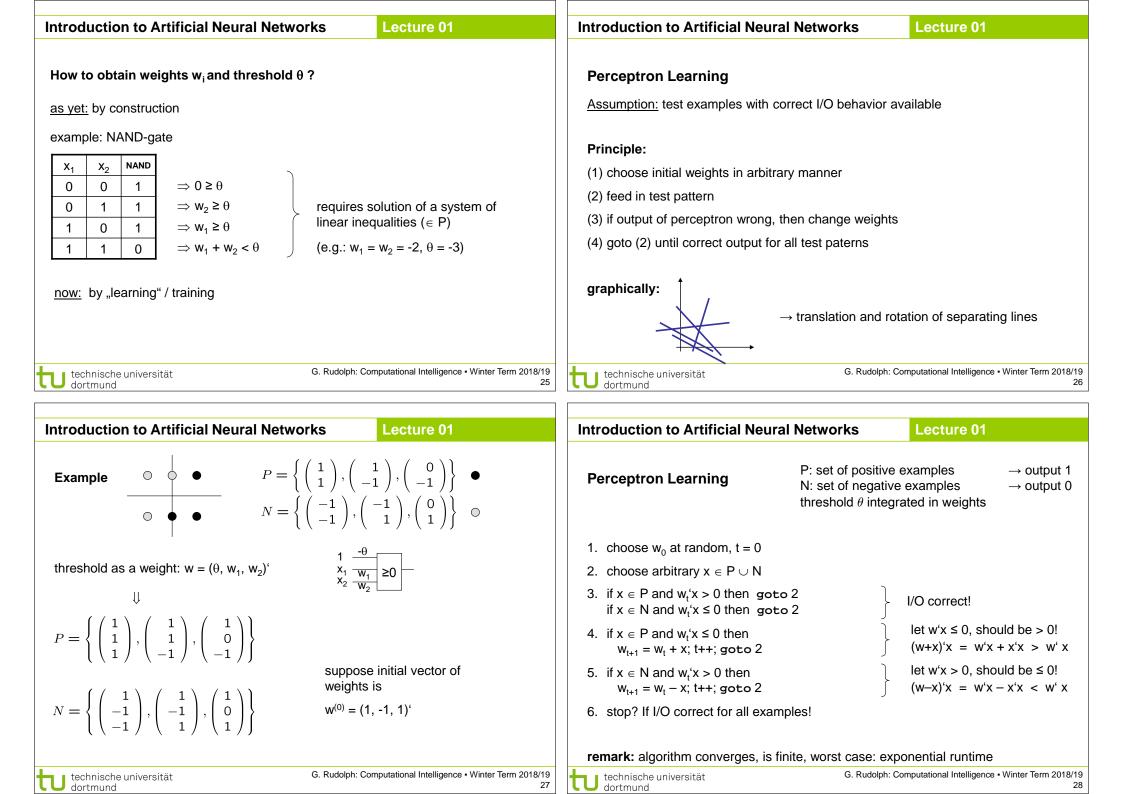
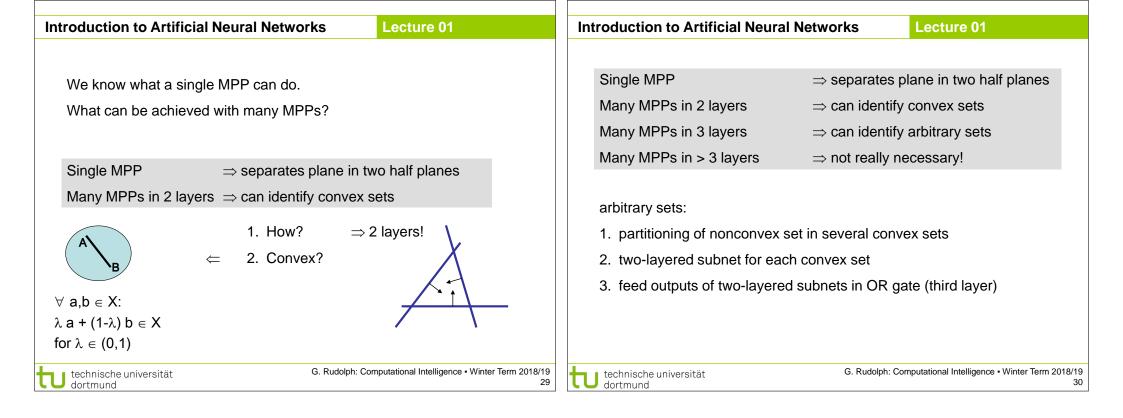


Organizatio	nal Issues		Lecture 01	Organizational Issues	Lecture 01
Lectures	Wednesday	10:15-11:45	OH12, R. E.003, weekly	Exams	
			•	 Effective since winter term 2014/15: v Informatik, Diplom: Leistungsnachw Informatik, Diplom: Fachprüfung Informatik, Bachelor: Module Automation & Robotics, Master: Module whoever else 	veis \rightarrow 'Übungsschein' \rightarrow written exam (90 min) \rightarrow written exam (90 min)
Slides Literature		9	Computational Intelligence • Winter Term 2018/1	mandatory for registration to written of technische universität	
erequisite	es		Lecture 01	Overview "Computational Intelligen	nce" Lecture 01
Knowledge about • mathematics, • programming,				What is CI ? \Rightarrow umbrella term for computational methods inspired by nature	
• logic is helpful	-			artifical neural networks evolutionary algorithms fuzzy systems swarm intelligence	backbone
But what if something is unknown to me? covered in the lecture pointers to literature 				 swarm intelligence artificial immune systems growth processes in trees 	new developments
	on't hesitate to ask!				
U technische dortmund	universität	G. Rudolph	Computational Intelligence • Winter Term 2018/1	dortmund	G. Rudolph: Computational Intelligence • Winter Term 20


Overview "Computational Intelligence"	Lecture 01	Introduction to Artificial Neural Networks	Lecture 01
 term "computational intelligence" made pop 	ular by John Bezdek (FL. USA)	Biological Prototype	
 originally intended as a demarcation line ⇒ establish border between artificial and c nowadays: blurring border 		 Neuron Information gathering (D) Information processing (C) 	human being: 10 ¹² neurons electricity in mV range speed: 120 m / s
 our goals: 1. know what CI methods are good for! 2. know when refrain from CI methods! 3. know why they work at all! 4. know how to apply and adjust CI methods! 	to your problem! plph: Computational Intelligence • Winter Term 2018/19 9	- Information propagation (A / S) cell body (C) axon nucleus dendrite (D) Cell body (C) C C C C C C C C C C C C C C C C C C	(A)
ntroduction to Artificial Neural Networks	Lecture 01	Introduction to Artificial Neural Networks	Lecture 01
Abstraction		Model	
dendrites	axon	x_1 x_2 x_2 x_n function f	$f(x_1, x_2,, x_n)$
signal signal input processing	signal output	$\label{eq:main_state} \begin{array}{c} McCulloch{-Pi}\\ x_{i} \in \{ \ 0, \ 1 \ \} =:\\ f \colon \mathbb{B}^{n} \to \mathbb{B} \end{array}$	tts-Neuron 1943: ℬ


technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2018/19 11


technische universität dortmund

ntroduction to Artificial Neural Networks	Lecture 01	Introduction to Artificial Neural Networks	Lecture 01	
Proof: (by construction) Every boolean function F can be transformed in disju	inctive normal form	Generalization: inputs with weights		
 ⇒ 2 layers (AND - OR) 1. Every clause gets a decoding neuron with θ = n ⇒ output = 1 only if clause satisfied (AND gate) 2. All outputs of decoding neurons are inputs of a neuron with θ = 1 (OR gate) 	q.e.d.	$x_{2} \xrightarrow{0,4} \geq 0,7$ $x_{3} \xrightarrow{0,3} \geq 0,7$ $x_{3} \xrightarrow{0,3} \qquad 2 x_{4}$ d $x_{1} \xrightarrow{0} \geq 7$	$ + 0.4 x_2 + 0.3 x_3 ≥ 0.7 \cdot 10 + 4 x_2 + 3 x_3 ≥ 7 ↓ uplicate inputs! > equivalent!$	
technische universität G. Rudolph:	Computational Intelligence • Winter Term 2018/19			
ntroduction to Artificial Neural Networks	Lecture 01	G. Rudolph dortmund	:: Computational Intelligence • Winter Term 2018	
ntroduction to Artificial Neural Networks	Lecture 01		a: Computational Intelligence • Winter Term 2018,	
Theorem: Weighted and unweighted MCP-nets are equival <i>Proof:</i> $_{,\Rightarrow}$ " Let $\sum_{i=1}^{n} \frac{a_i}{b_i} x_i \ge \frac{a_0}{b_0}$ with a_i ,	Lecture 01 i lent for weights $\in \mathbb{Q}^+$. $b_i \in \mathbb{N}$	Introduction to Artificial Neural Networks	Lecture 01	
Theorem: Weighted and unweighted MCP-nets are equiva Proof: n	Lecture 01 $b_i \in \mathbb{N}$ ficients in \mathbb{N}	Introduction to Artificial Neural Networks Conclusion for MCP nets + feed-forward: able to compute any Boolean + recursive: able to simulate DFA	Lecture 01	
Theorem: Weighted and unweighted MCP-nets are equival proof: $x \Rightarrow^{a}$ Let $\sum_{i=1}^{n} \frac{a_{i}}{b_{i}} x_{i} \ge \frac{a_{0}}{b_{0}}$ with a_{i} , Multiplication with $\prod_{i=0}^{n} b_{i}$ yields inequality with coefficients	Lecture 01 $b_i \in \mathbb{N}$ ficients in \mathbb{N}	Introduction to Artificial Neural Networks Conclusion for MCP nets feed-forward: able to compute any Boolean recursive: able to simulate DFA overy similar to conventional logical circuits odifficult to construct	Lecture 01	

