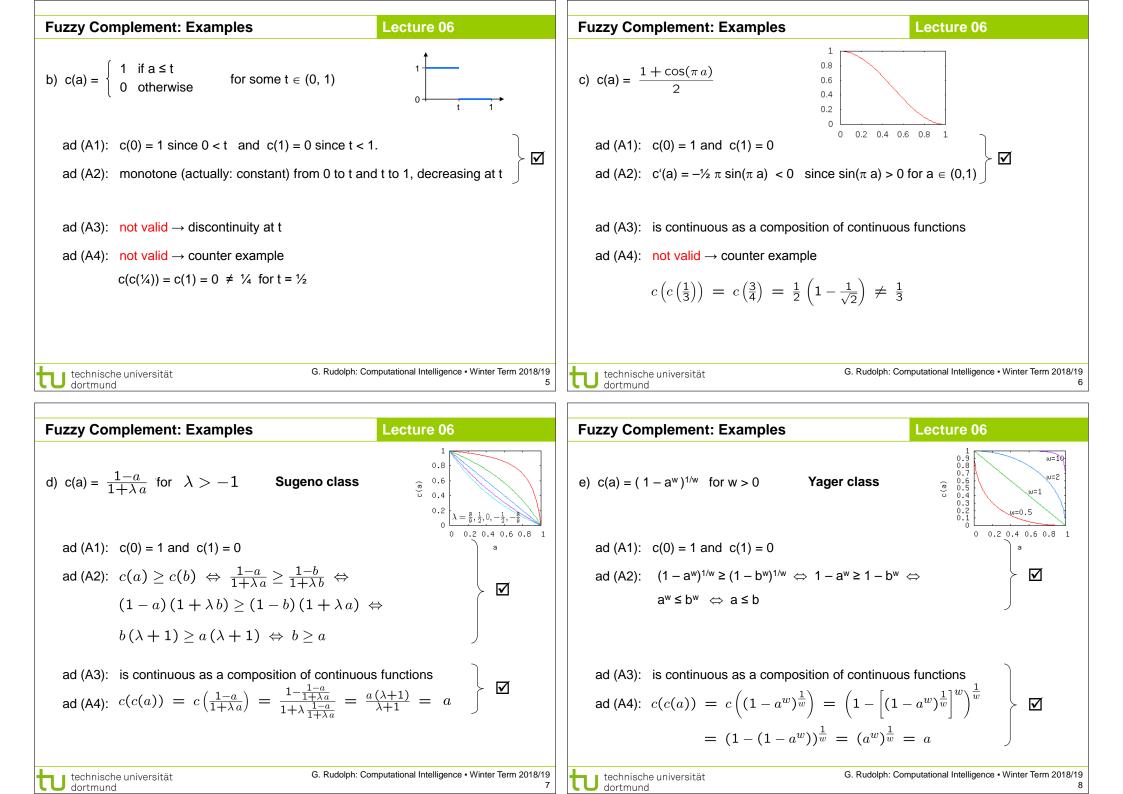
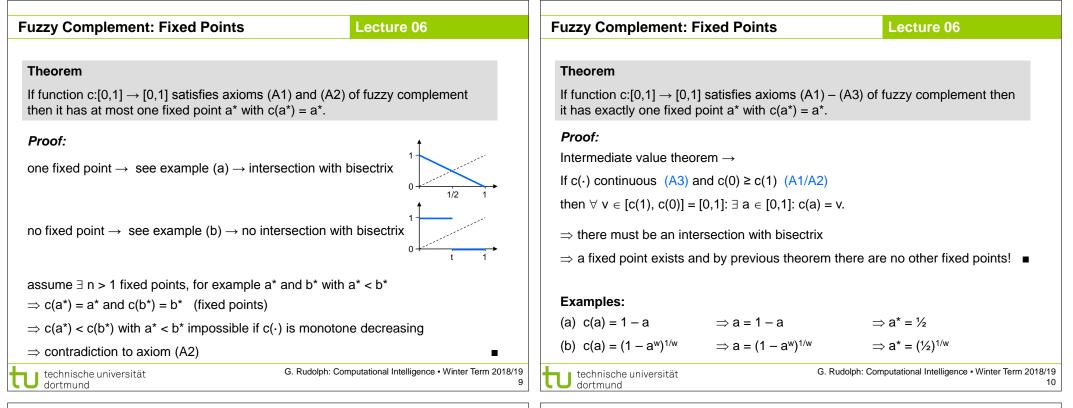
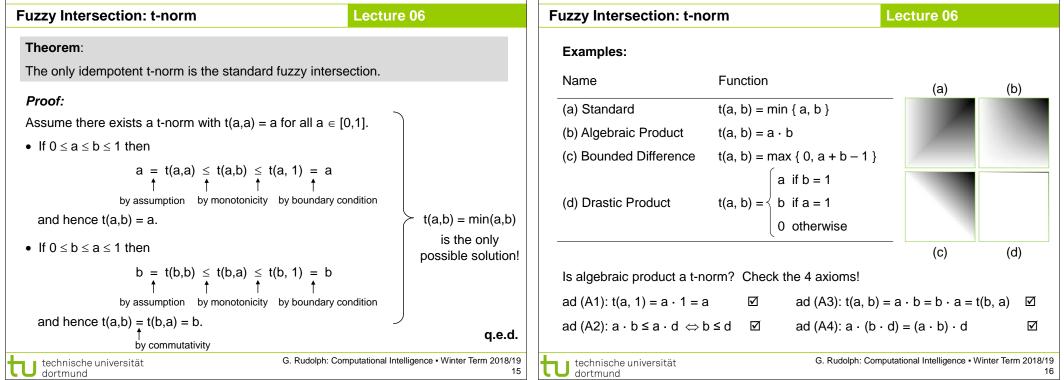
technische universität dortmund		Plan for Today	Lecture 06
Computational Intelligence Winter Term 2018/19	•	 Fuzzy sets Axioms of fuzzy comple Generators Dual tripels 	ment, t- and s-norms
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund		technische universität	G. Rudolph: Computational Intelligence • Winter Term 2018/
		dortmund	G. Rudolph. Computational Intelligence - Winter Term 2016
Fuzzy Sets	Lecture 06	Fuzzy Complement: Axioms	Lecture 06
 Fuzzy Sets Considered so far: Standard fuzzy operators A^c(x) = 1 - A(x) (A ∩ B)(x) = min { A(x), B(x) } (A ∪ B)(x) = max { A(x), B(x) } Compatible with operators for crisp sets with membership functions with values in B = 4 Non-standard operators? ⇒ Yes! Innumerable 	{0, 1 }	dortmund	Lecture 06 $y complement$ iff $(a) \ge c(b)$. monotone decreasing involutive





Fuzzy Complement: 1 st Characterization	Lecture 06	Fuzzy Complement: 1st Characterization Lecture 06
Theorem c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff \exists continuous function g: $[0,1] \rightarrow \mathbb{R}$ with • $g(0) = 0$ • strictly monotone increasing • $\forall a \in [0,1]$: $c(a) = g^{(-1)}(g(1) - g(a))$.	defines an increasing generator g ⁽⁻¹⁾ (x) pseudo-inverse	Examples d) $g(a) = \frac{1}{\lambda} \log_e(1 + \lambda a) \text{ for } \lambda > -1$ $\cdot g(0) = \log_e(1) = 0$ $\cdot \text{ strictly monotone increasing since } g'(a) = \frac{1}{1 + \lambda a} > 0 \text{ for } a \in [0, 1]$ $\cdot \text{ inverse function on } [0,1] \text{ is } g^{-1}(a) = \frac{\exp(\lambda a) - 1}{\lambda} \text{, thus}$ $c(a) = g^{-1} \left(\frac{\log(1 + \lambda)}{\lambda} - \frac{\log(1 + \lambda a)}{\lambda} \right)$
Examples a) $g(x) = x \qquad \Rightarrow g^{-1}(x) = x \qquad \Rightarrow c(a) = 1 - a$	(Standard)	$= \frac{\exp(\log(1+\lambda) - \log(1+\lambda a)) - 1}{\lambda}$
b) $g(x) = x^w$ $\Rightarrow g^{-1}(x) = x^{1/w}$ $\Rightarrow c(a) = (1 - a^w)^{1/w}$ c) $g(x) = \log(x+1) \Rightarrow g^{-1}(x) = e^x - 1 \Rightarrow c(a) = \exp(\log(x+1))^{1/w}$		$= \frac{1}{\lambda} \left(\frac{1+\lambda}{1+\lambda a} - 1 \right) = \frac{1-a}{1+\lambda a} (\text{Sugeno Complement})$
$g(x) = \log(x+1) \rightarrow g^{-}(x) = e^{x} - 1 \Rightarrow c(a) = exp(\log(a))$ $= \frac{1-a}{1+a}$	$(\text{Sugeno class. } \lambda = 1)$	
U technische universität G. Rudolph: Con dortmund	mputational Intelligence • Winter Term 2018/19 11	G. Rudolph: Computational Intelligence • Winter Term 2013

Fuzzy Complement: 2 nd Characterization	Lecture 06	Fuzzy Intersection: t-norm	Lecture 06
Theorem		Definition	
c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff		A function t:[0,1] x [0,1] \rightarrow [0,1] is a <i>fuzzy inters</i>	ection or <i>t</i>-norm iff $\forall a,b,d \in [0,1]$
\exists continuous function f: [0,1] $\rightarrow \mathbb{R}$ with		(A1) $t(a, 1) = a$	(boundary condition)
• f(1) = 0	defines a	(A2) $b \le d \Rightarrow t(a, b) \le t(a, d)$	(monotonicity)
strictly monotone decreasing	decreasing generator	(A3) $t(a,b) = t(b, a)$	(commutative)
• $\forall a \in [0,1]$: $c(a) = f^{(-1)}(f(0) - f(a))$.	f ⁽⁻¹⁾ (x) pseudo-inverse	(A4) $t(a, t(b, d)) = t(t(a, b), d)$	(associative) ■
Examples		"nice to have"	
a) $f(x) = k - k \cdot x$ $(k > 0)$ $f^{(-1)}(x) = 1 - x/k$ $c(a) =$	$1 - \frac{k - (k - ka)}{k} = 1 - a$	(A5) t(a, b) is continuous	(continuity)
	ħ	(A6) t(a, a) < a for 0 < a < 1	(subidempotent)
b) $f(x) = 1 - x^w$ $f^{(-1)}(x) = (1 - x)^{1/w}$ $c(a) = f^{(-1)}(x)$	⁻¹ (a ^w) = (1 – a ^w) ^{1/w} (Yager)	(A7) $a_1 < a_2$ and $b_1 \le b_2 \implies t(a_1, b_1) < t(a_2, b_2)$	(strict monotonicity)
		Note: the only idempotent t-norm is the standard	fuzzy intersection
U technische universität G. Rudolph: C	omputational Intelligence • Winter Term 2018/19 13	technische universität G. Ru dortmund	udolph: Computational Intelligence • Winter Term 201



zzy Intersection: Characterization	Lecture 06	Fuzzy Union: s-norm		Lecture 06
heorem		Definition		
unction t: [0,1] x [0,1] \rightarrow [0,1] is a t-norm \Leftrightarrow		A function s:[0,1] x $[0,1] \rightarrow [0,1]$),1] is a fuzzy union or s -	<i>norm</i> iff ∀a,b,d ∈ [0,1]
decreasing generator f:[0,1] $\rightarrow \mathbb{R}$ with t(a, b) = f ⁻¹ (min	{ f(0), f(a) + f(b) }). ■	(A1) $s(a, 0) = a$		(boundary condition)
		(A2) $b \le d \Rightarrow s(a, b) \le s(a, c)$	d)	(monotonicity)
xample:		(A3) $s(a, b) = s(b, a)$		(commutative)
x) = 1/x - 1 is decreasing generator since		(A4) $s(a, s(b, d)) = s(s(a, b))$, d)	(associative)
f(x) is continuous				
f(1) = 1/1 - 1 = 0		"nice to have"		
$f'(x) = -1/x^2 < 0$ (monotone decreasing)		(A5) s(a, b) is continuous		(continuity)
nverse function is f ⁻¹ (x) = $\frac{1}{x+1}$; f(0) = ∞ \Rightarrow min{	f(0), f(0), f(0), f(0), f(0)	(A6) s(a, a) > a	for 0 < a < 1	(superidempotent)
we set function is $\Gamma(x) = \frac{1}{x+1}$, $\Gamma(0) = \infty \implies \min\{x\}$	$I(0), I(a) + I(b) \} = I(a) + I(b)$	(A7) $a_1 < a_2$ and $b_1 \le b_2 \Rightarrow$	$s(a_1, b_1) < s(a_2, b_2)$	(strict monotonicity)
\Rightarrow t(a, b) = $f^{-1}\left(\frac{1}{a} + \frac{1}{b} - 2\right) = \frac{1}{\frac{1}{a} + \frac{1}{b} - 1} =$	$\frac{ab}{a+b-ab}$	Note: the only idempotent s-	norm is the standard fuzz	y union
technische universität G. Rudolph: Com dortmund	putational Intelligence • Winter Term 2018/19 17	technische universität dortmund	G. Rudolph: (Computational Intelligence • Winter Term 201

F	uzzy Union: s-norm		Lecture 06		
	Examples:				
	Name	Function	(a)	(b)	
	Standard	s(a, b) = max { a, b }			
	Algebraic Sum	$s(a, b) = a + b - a \cdot b$			
	Bounded Sum	s(a, b) = min { 1, a + b }			
		$s(a, b) = \begin{cases} a & \text{if } b = 0 \\ b & \text{if } a = 0 \\ 1 & \text{otherwise} \end{cases}$			
	Drastic Union	s(a, b) = b if a = 0			
		1 otherwise			
			(c)	(d)	
	Is algebraic sum a t-norm? Check the 4 axioms!				
	ad (A1): s(a, 0) = a + 0 - a	ad (A3): 🗹			
	ad (A2): $a + b - a \cdot b \le a \cdot b$	ad (A4): 🗹			
t	U technische universität dortmund	G. Rudolph: Con	nputational Intelligence • V	Vinter Term 2018/19 19	

Fuzzy Union: Characterization		Lecture 06
Theorem		
Function s: [0,1] x [0,1] \rightarrow [0,1] is a	a s-norm ⇔	
$\exists \text{increasing generator g:} [0,1] \rightarrow \mathbb{R}$	with $s(a, b) = g^{-1}(m)$	n{ g(1), g(a) + g(b) }). ∎
Example:		
g(x) = -log(1 - x) is increasing ger	nerator since	
 g(x) is continuous 	\checkmark	
• $g(0) = -log(1 - 0) = 0$	\checkmark	
 g'(x) = 1/(1 − x) > 0 (monotone in 	ncreasing) 🗹	
inverse function is $g^{-1}(x) = 1 - exp$	$(-x); g(1) = \infty \Rightarrow min$	$\{g(1), g(a) + g(b)\} = g(a) + g(b)\}$
\Rightarrow s(a, b) = $g^{-1}(-\log(1-a))$	$-\log(1-b))$	
$= 1 - \exp(\log(1 - a))$	$) + \log(1-b))$	
= 1 - (1 - a)(1 - b)	b) $-a \pm b - ab$	(algebraic sum)

Combination of Fuzz	y Operations: Dual Triple	s Lecture 06	Dual Triples vs. Non-Dual	Triples	Lecture 06
Background from clas	ssical set theory:				Dual Triple:
\cap and \cup operations are	e dual w.r.t. complement since	they obey DeMorgan's laws			- bounded difference
					- bounded sum
Definition		Definition			- standard complement
	nd s-norm $s(\cdot, \cdot)$ is said to be	Let (c, s, t) be a tripel			composition of the second s
dual with regard to th	e fuzzy complement $c(\cdot)$ iff	of fuzzy complement $c(\cdot)$, s- and t-norm.			\Rightarrow left image = right image
• $c(t(a, b)) = s(c(a), c(a))$	c(b))				
• c(s(a, b)) = t(c(a), o	c(b))	If t and s are dual to c then the tripel (c,s, t) is	c(t(a, b))	s(c(a), c(b))	
for all a, b ∈ [0,1].	-	called a <i>dual tripel</i> .			Non-Dual Triple:
					- algebraic product
Examples of dual trip	els				- bounded sum
t-norm	s-norm	complement			- standard complement
min { a, b }	max { a, b }	1 – a			standard completitent
a∙b	a+b−a·b	1 – a			\Rightarrow left image \neq right image
max { 0, a + b – 1 }	min { 1, a + b }	1 – a			\rightarrow rent image \neq fight image
technische universität	G. Rudolph:	Computational Intelligence • Winter Term 2018/19	technische universität	G. Rudolph: (Computational Intelligence • Winter Term 201
U dortmund		21	l U dortmund		

Dual Triples vs. Non-Dual Triples

Lecture 06

Why are dual triples so important?

- \Rightarrow allow equivalence transformations of fuzzy set expressions
- \Rightarrow required to transform into some equivalent normal form (standardized input)

 \Rightarrow e.g. two stages: intersection of unions

$$\bigcap_{i=1}^{n} (A_i \cup B_i)$$

n

or union of intersections

$$\bigcup_{i=1}^{n} (A_i \cap B_i)$$

Example:

 $A \cup (B \cap (C \cap D)^c) =$

 $A \cup (B \cap (C^c \cup D^c)) =$ $A \cup (B \cap C^c) \cup (B \cap D^c)$

U technische universität dortmund

← not in normal form ← equivalent if DeMorgan's law valid (dual triples!) ← equivalent (distributive lattice!) G. Rudolph: Computational Intelligence - Winter Term 2018/19 23