

Computational Intelligence

Winter Term 2018/19

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Plan for Today

Lecture 08

- Approximate Reasoning
- Fuzzy Control

technische universität dortmund

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2018/19

Approximative Reasoning

Lecture 08

So far:

- p: IF X is A THEN Y is B
- \rightarrow R(x, y) = Imp(A(x), B(y))

rule as relation; fuzzy implication

- rule:
- IF X is A THEN Y is B
- fact: X is A'
 conclusion: Y is B'

technische universität

 \rightarrow B'(y) = sup_{x∈X} t(A'(x), R(x, y))

composition rule of inference

Thus:

- B'(y) = $\sup_{x \in X} t(A'(x), Imp(A(x), B(y))$
- : fuzzy rule given
- : fuzzy set A' input
- output : fuzzy set B'

G. Rudolph: Computational Intelligence • Winter Term 2018/19

Approximative Reasoning

Lecture 08

nere:
$$\begin{cases} 1 & \text{for } x = x_0 \\ x'(x) & = \end{cases}$$

crisp input!

 $B'(y) = \sup_{x \in X} t(A'(x), Imp(A(x), B(y)))$

$$= \begin{cases} \sup_{x \neq x_0} t(0, Imp(A(x), B(y))) & \text{for } x \neq x_0 \end{cases}$$

t(1, Imp(A(
$$x_0$$
), B(y))) for $x = x_0$

$$= \begin{cases} 0 & \text{for } x \neq x_0 & \text{since } t(0, a) = 0 \\ \\ \text{Imp}(A(x_0), B(y)) & \text{for } x = x_0 & \text{since } t(a, 1) = a \end{cases}$$

- Imp($A(x_0)$, B(y)) for $x = x_0$
 - G. Rudolph: Computational Intelligence Winter Term 2018/19

Lecture 08

Lemma:

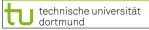
- a) t(a, 1) = a
- b) $t(a, b) \le min \{a, b\}$
- c) t(0, a) = 0

Proof:

ad a) Identical to axiom 1 of t-norms.

ad b) From monotonicity (axiom 2) follows for $b \le 1$, that $t(a, b) \le t(a, 1) = a$. Commutativity (axiom 3) and monotonicity lead in case of $a \le 1$ to $t(a, b) = t(b, a) \le t(b, 1) = b$. Thus, t(a, b) is less than or equal to a as well as b, which in turn implies $t(a, b) \le min\{a, b\}$.

ad c) From b) follows $0 \le t(0, a) \le \min \{0, a\} = 0$ and therefore t(0, a) = 0.



G. Rudolph: Computational Intelligence • Winter Term 2018/19

by a)

Approximative Reasoning

Lecture 08

FITA: "First inference, then aggregate!"

- 1. Each rule of the form IF X is A_k THEN Y is B_k must be transformed by an appropriate fuzzy implication $Imp_k(\cdot,\cdot)$ to a relation R_k : $R_k(x, y) = Imp_k(A_k(x), B_k(y))$.
- 2. Determine $B_k'(y) = R_k(x, y) \circ A'(x)$ for all k = 1, ..., n (local inference).
- 3. Aggregate to $B'(y) = \beta(B_1'(y), ..., B_n'(y))$.

FATI: "First aggregate, then inference!"

- 1. Each rule of the form IF X ist A_k THEN Y ist B_k must be transformed by an appropriate fuzzy implication $Imp_k(\cdot, \cdot)$ to a relation R_k : $R_k(x, y) = Imp_k(A_k(x), B_k(y))$.
- 2. Aggregate $R_1, ..., R_n$ to a **superrelation** with aggregating function $\alpha(\cdot)$: $R(x, y) = \alpha(R_1(x, y), ..., R_n(x, y))$.
- 3. Determine B'(y) = $R(x, y) \circ A'(x)$ w.r.t. superrelation (inference).

Approximative Reasoning

Lecture 08

Multiple rules:

$$\begin{array}{ll} \text{IF X is } A_1, \text{ THEN Y is } B_1 \\ \text{IF X is } A_2, \text{ THEN Y is } B_2 \\ \text{IF X is } A_3, \text{ THEN Y is } B_3 \\ \dots \\ \text{IF X is } A_n, \text{ THEN Y is } B_n \\ \text{Y is } B^t \\ \end{array} \qquad \begin{array}{ll} \rightarrow R_1(x,y) = \text{Imp}_1(\ A_1(x),\ B_1(y)\) \\ \rightarrow R_2(x,y) = \text{Imp}_2(\ A_2(x),\ B_2(y)\) \\ \rightarrow R_3(x,y) = \text{Imp}_3(\ A_3(x),\ B_3(y)\) \\ \dots \\ \rightarrow R_n(x,y) = \text{Imp}_n(\ A_n(x),\ B_n(y)\) \\ \end{array}$$

Multiple rules for <u>crisp input</u>: x_0 is given

$$\begin{array}{c} B_1{}^{\prime}(y) = Imp_1(A_1(x_0), \ B_1(y) \) \\ \dots \\ B_n{}^{\prime}(y) = Imp_n(A_n(x_0), \ B_n(y) \) \end{array} \end{array} \right\} \hspace{0.5cm} \text{aggregation of rules or local inferences necessary!}$$

aggregate!
$$\Rightarrow$$
 B'(y) = aggr{ B₁'(y), ..., B_n'(y) }, where aggr =
$$\begin{cases} min \\ max \end{cases}$$

G. Rudolph: Computational Intelligence • Winter Term 2018/19

Approximative Reasoning

technische universität

dortmund

Lecture 08

- 1. Which principle is better? FITA or FATI?
- 2. Equivalence of FITA and FATI?

FITA:
$$B'(y) = \beta(B_1'(y), ..., B_n'(y))$$
$$= \beta(R_1(x, y) \circ A'(x), ..., R_n(x, y) \circ A'(x))$$

FATI:
$$B'(y) = R(x, y) \circ A'(x)$$

= $\alpha(R_1(x, y), ..., R_n(x, y)) \circ A'(x)$

Lecture 08

special case:
$$A'(x) = \begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$$

crisp input!

On the equivalence of FITA and FATI:

FITA:
$$B'(y) = \beta(B_1'(y), ..., B_n'(y))$$
$$= \beta(Imp_1(A_1(x_0), B_1(y)), ..., Imp_n(A_n(x_0), B_n(y)))$$

$$\begin{aligned} \text{FATI:} & \quad \mathsf{B}'(y) &= \mathsf{R}(x,\,y) \circ \mathsf{A}'(x) \\ &= \sup_{x \in \mathsf{X}} \, \mathsf{t}(\,\mathsf{A}'(x),\,\mathsf{R}(x,\,y)\,) & \quad \text{(from now: special case)} \\ &= \; \mathsf{R}(x_0,\,y) \\ &= \; \alpha(\,\mathsf{Imp}_1(\,\mathsf{A}_1(x_0),\,\mathsf{B}_1(y)\,),\,...,\,\mathsf{Imp}_n(\,\mathsf{A}_n(x_0),\,\mathsf{B}_n(y)\,)\,) \end{aligned}$$

evidently: sup-t-composition with arbitrary t-norm and $\alpha(\cdot) = \beta(\cdot)$

G. Rudolph: Computational Intelligence • Winter Term 2018/19

Approximative Reasoning

Lecture 08

important:

- if rules of the form **IF** X is A THEN Y is B interpreted as <u>logical</u> implication
 - \Rightarrow R(x, y) = Imp(A(x), B(y)) makes sense
- we obtain: $B'(y) = \sup_{x \in X} t(A'(x), R(x, y))$
- \Rightarrow the worse the match of premise A'(x), the larger is the fuzzy set B'(y)
- \Rightarrow follows immediately from axiom 1: $a \le b$ implies $Imp(a, z) \ge Imp(b, z)$

interpretation of output set B'(y):

- B'(y) is the set of values that are still possible
- each rule leads to an additional restriction of the values that are still possible
- \Rightarrow resulting fuzzy sets B'_k(y) obtained from single rules must be mutually <u>intersected!</u>
- \Rightarrow aggregation via $B'(y) = \min \{ B_1'(y), ..., B_n'(y) \}$

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2018/19

Approximative Reasoning

Lecture 08

• AND-connected premises

IF
$$X_1 = A_{11}$$
 AND $X_2 = A_{12}$ AND ... AND $X_m = A_{1m}$ THEN $Y = B_1$...

IF $X_n = A_{n1}$ AND $X_2 = A_{n2}$ AND ... AND $X_m = A_{nm}$ THEN $Y = B_n$ reduce to single premise for each rule k:

$$A_k(x_1, \dots, x_m) = \min \{A_{k1}(x_1), A_{k2}(x_2), \dots, A_{km}(x_m)\}$$
 or in general: t-norm

• OR-connected premises

$$\begin{split} &\text{IF X}_1 = A_{11} \text{ OR X}_2 = A_{12} \text{ OR } \dots \text{ OR X}_m = A_{1m} \text{ THEN Y} = B_1 \\ \dots \\ &\text{IF X}_n = A_{n1} \text{ OR X}_2 = A_{n2} \text{ OR } \dots \text{ OR X}_m = A_{nm} \text{ THEN Y} = B_n \\ &\text{reduce to single premise for each rule k:} \\ &A_k(x_1, \dots, x_m) = \max \left\{ A_{k1}(x_1), A_{k2}(x_2), \dots, A_{km}(x_m) \right\} \qquad \text{or in general: s-norm} \end{split}$$

Approximative Reasoning

G. Rudolph: Computational Intelligence • Winter Term 2018/19

Lecture 08

important:

• if rules of the form IF X is A THEN Y is B are not interpreted as logical implications, then the function Fct(·) in

$$R(x, y) = Fct(A(x), B(y))$$

can be chosen as required for desired interpretation.

- frequent choice (especially in fuzzy control):
 - $-R(x, y) = min \{A(x), B(x)\}$

Mamdani - "implication"

 $-R(x, y) = A(x) \cdot B(x)$

Larsen - "implication"

- $\Rightarrow\,$ of course, they are no implications but specific t-norms!
- ⇒ thus, if <u>relation R(x, y) is given</u>, then the *composition rule of inference*

$$B'(y) = A'(x) \circ R(x, y) = \sup_{x \in X} \min \{ A'(x), R(x, y) \}$$

still can lead to a conclusion via fuzzy logic.

Lecture 08

example: [JM96, S. 244ff.]

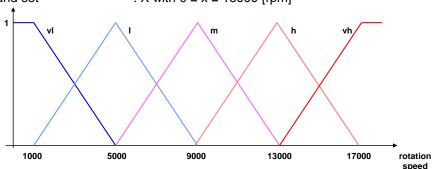
industrial drill machine → control of cooling supply

modelling

linguistic variable : rotation speed

linguistic terms : very low, low, medium, high, very high

ground set : X with $0 \le x \le 18000$ [rpm]



technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2018/19

Approximative Reasoning

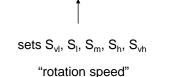
Lecture 08

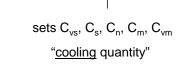
example: (continued)

industrial drill machine → control of cooling supply

rule base

IF rotation speed IS very low THEN cooling quantity IS very small
low small
medium normal
high much
very high very much





Approximative Reasoning

Lecture 08

example: (continued)

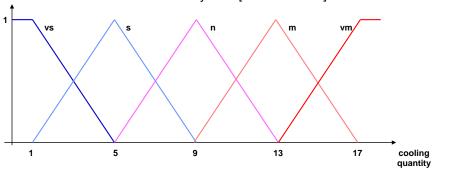
industrial drill machine → control of cooling supply

modelling

linguistic variable : cooling quantity

linguistic terms : very small, small, normal, much, very much

ground set : Y with $0 \le y \le 18$ [liter / time unit]



J technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2018/19

Approximative Reasoning

Lecture 08

example: (continued)

industrial drill machine \rightarrow control of cooling supply

- 1. input: crisp value $x_0 = 10000 \text{ min}^{-1}$ (not a fuzzy set!)
 - → **fuzzyfication** = determine membership for each fuzzy set over X
 - $\rightarrow \text{yields } S' = (0,\,0,\,{}^{3}\!\!/_{\!\!4},\,{}^{1}\!\!/_{\!\!4},\,0) \text{ via x } \alpha \text{ (} S_{\text{vl}}(x_0),\,S_{\text{l}}(x_0),\,S_{\text{m}}(x_0),\,S_{\text{h}}(x_0),\,S_{\text{vh}}(x_0) \text{)}$
- 2. FITA: locale **inference** \Rightarrow since Imp(0,a) = 0 we only need to consider:

 $S_m: C'_n(y) = Imp(\frac{3}{4}, C_n(y))$

 S_h : $C'_m(y) = Imp(\frac{1}{4}, C_m(y))$

3. aggregation:

 $C'(y) = aggr \{ C'_n(y), C'_m(y) \} = max \{ (mp) (3/4, C_n(y)), (mp) (1/4, C_m(y)) \}$

Lecture 08

example: (continued)

industrial drill machine → control of cooling supply

 $C'(y) = max \{ Imp(\frac{3}{4}, C_n(y)), Imp(\frac{1}{4}, C_m(y)) \}$

in case of control task typically no logic-based interpretation:

- → max-aggregation and
- \rightarrow relation R(x,y) not interpreted as implication.

often: R(x,y) = min(a, b) "Mamdani controller"

thus:

 $C'(y) = \max \{ \min \{ \frac{3}{4}, C_n(y) \}, \min \{ \frac{1}{4}, C_m(y) \} \}$

→ graphical illustration

G. Rudolph: Computational Intelligence • Winter Term 2018/19

Fuzzy Control

Lecture 08

open and closed loop control:

affect the dynamical behavior of a system in a desired manner

• open loop control

control is aware of reference values and has a model of the system ⇒ control values can be adjusted, such that process value of system is equal to reference value problem: noise! ⇒ deviation from reference value not detected

• closed loop control

now: detection of deviations from reference value possible (by means of measurements / sensors) and new control values can take into account the amount of deviation

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2018/19

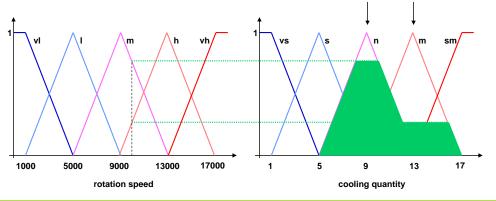
Approximative Reasoning

Lecture 08

example: (continued)

industrial drill machine → control of cooling supply

 $C'(y) = \max \{ \min \{ \frac{3}{4}, C_n(y) \}, \min \{ \frac{1}{4}, C_m(y) \} \}, x_0 = 10000 [rpm] \}$



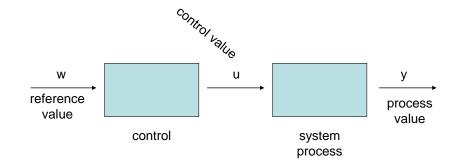
technische universität dortmund

Fuzzy Control

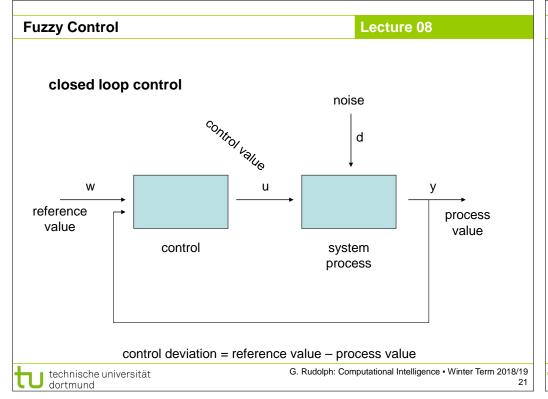
G. Rudolph: Computational Intelligence • Winter Term 2018/19

Lecture 08

open loop control



assumption: undisturbed operation \Rightarrow process value = reference value



Lecture 08

required:

model of system / process

- → as differential equations or difference equations (DEs)
- → well developed theory available

so, why fuzzy control?

- there exists no process model in form of DEs etc. (operator/human being has realized control by hand)
- ullet process with high-dimensional nonlinearities ullet no classic methods available
- control goals are vaguely formulated ("soft" changing gears in cars)

G. Rudolph: Computational Intelligence • Winter Term 2018/19

Fuzzy Control Lecture 08

fuzzy description of control behavior

IF X is A₁, THEN Y is B₁ IF X is A₂, THEN Y is B₂ IF X is A₃, THEN Y is B₃ IF X is A_n, THEN Y is B_n X is A' Y is B'

similar to approximative reasoning

but fact A' is not a fuzzy set but a crisp input

→ actually, it is the current process value

fuzzy controller executes inference step

 \rightarrow yields fuzzy output set B'(y)

but crisp control value required for the process / system

→ defuzzification (= "condense" fuzzy set to crisp value)

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2018/19

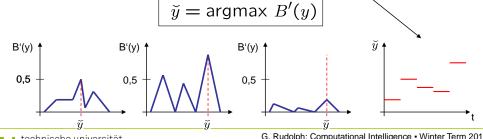
Fuzzy Control

Lecture 08

defuzzification

Def: rule k active $\Leftrightarrow A_k(x_0) > 0$

- maximum method
 - only active rule with largest activation level is taken into account
 - → suitable for pattern recognition / classification
 - → decision for a single alternative among finitely many alternatives
 - selection independent from activation level of rule (0.05 vs. 0.95)
 - if used for control: incontinuous curve of output values (leaps)



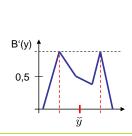
technische universität

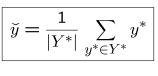
G. Rudolph: Computational Intelligence • Winter Term 2018/19

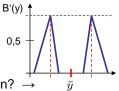
defuzzification

 $Y^* = \{ y \in Y : B'(y) = hgt(B') \}$

- maximum mean value method
 - all active rules with largest activation level are taken into account
 - → interpolations possible, but need not be useful
 - → obviously, only useful for neighboring rules with max. activation
 - selection independent from activation level of rule (0.05 vs. 0.95)
 - if used in control: incontinuous curve of output values (leaps)







useful solution?

G. Rudolph: Computational Intelligence • Winter Term 2018/19

technische universität dortmund

Fuzzy Control Lecture 08

defuzzification

- Center of Gravity (COG)
 - all active rules are taken into account
 - → but numerically expensiveonly valid for HW solution, today!
 - → borders cannot appear in output (∃ work-around)
 - if only single active rule: independent from activation level
 - continuous curve for output values

$$\widetilde{y} = \frac{\int y \cdot B'(y) \, dy}{\int B'(y) \, dy}$$

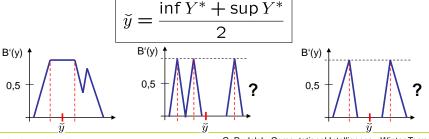
Fuzzy Control

Lecture 08

defuzzification

 $Y^* = \{ y \in Y : B'(y) = hgt(B') \}$

- center-of-maxima method (COM)
 - only extreme active rules with largest activation level are taken into account
 - → interpolations possible, but need not be useful
 - → obviously, only useful for neighboring rules with max. activation level
 - selection independent from activation level of rule (0.05 vs. 0.95)
 - in case of control: incontinuous curve of output values (leaps)



technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2018/19

Fuzzy Control

Lecture 08

Excursion: COG

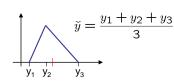
$$\widetilde{y} = \frac{\int y \cdot B'(y) \, dy}{\int B'(y) \, dy}$$

pendant in probability theory: expectation value

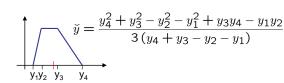
triangle:

27

trapezoid:

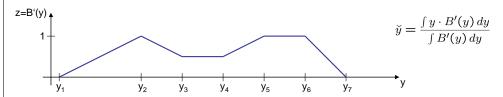


technische universität



Fuzzy Control

Lecture 08



assumption: fuzzy membership functions piecewise linear

output set B'(y) represented by sequence of points $(y_1, z_1), (y_2, z_2), ..., (y_n, z_n)$

- \Rightarrow area under B'(y) and weighted area can be determined additively piece by piece
- \Rightarrow linear equation $z = m y + b \Rightarrow$ insert (y_i, z_i) and (y_{i+1}, z_{i+1})
- ⇒ yields m and b for each of the n-1 linear sections

$$\Rightarrow F_i = \int_{y_i}^{y_{i+1}} (my+b) \, dy = \frac{m}{2} (y_{i+1}^2 - y_i^2) + b(y_{i+1} - y_i)$$

$$\Rightarrow G_i = \int_{y_i}^{y_{i+1}} y(my+b) \, dy = \frac{m}{3} (y_{i+1}^3 - y_i^3) + \frac{b}{2} (y_{i+1}^2 - y_i^2)$$

$$\breve{y} = \frac{\sum_i G_i}{\sum_i F_i}$$

U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2018/19

Fuzzy Control

Lecture 08

Defuzzification

- Center of Area (COA)
 - developed as an approximation of COG
 - let \hat{y}_k be the COGs of the output sets $B'_k(y)$:

$$\tilde{y} = \frac{\sum_{k} A_k(x_0) \cdot \hat{y}_k}{\sum_{k} A_k(x_0)}$$

how to:

assume that fuzzy sets $A_k(x)$ and $B_k(x)$ are triangles or trapezoids let x_0 be the crisp input value for each fuzzy rule "IF A_k is X THEN B_k is Y" determine $B_k'(y) = R(A_k(x_0), B_k(y))$, where R(.,.) is the relation find \hat{y}_k as center of gravity of $B_k'(y)$

G. Rudolph: Computational Intelligence • Winter Term 2018/19

30