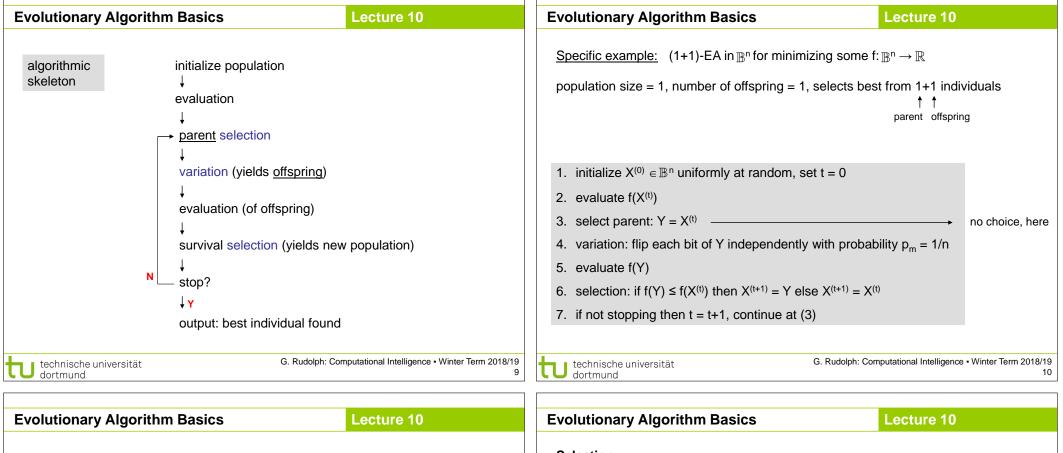
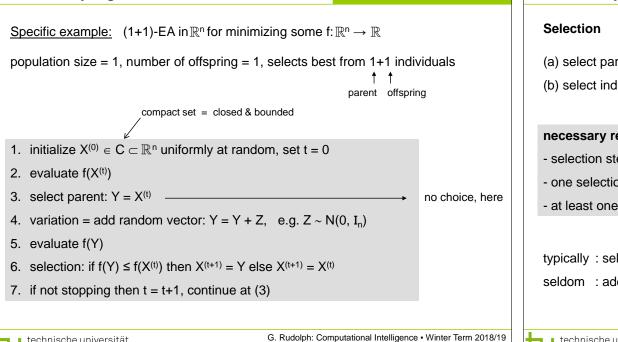
technische universität dortmund				Plan for Today	Lecture 10
Computationa Winter Term 2018/19	ıl Intellige	ence		 Evolutionary Algorithms (EA) Optimization Basics EA Basics 	
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Eng Fakultät für Informatik TU Dortmund	gineering (LS 11)			G. F dortmund	Rudolph: Computational Intelligence • Winter Term 2018/19 2
Optimization Basics		Lect	ture 10	Optimization Basics	Lecture 10
modelling	! →	?	! →	given: objective function f: $X \rightarrow \mathbb{R}$ feasible region X (= nonempty set)	
simulation	!→	!	?	objective: find solution with <i>minimal</i> or <i>maxim</i>	nal value!
				optimization problem:	x* global solution
	၁ –			find $x^* \in X$ such that $f(x^*) = min\{ f(x) : x \in X \}$	f(x*) global optimum
optimization	ſ ➡	!		$\frac{\text{note:}}{\max\{ f(x) : x \in X \}} = -\min\{ -f(x) : x \in X \}$	
	input	system	output		
technische universität dortmund		G. Rudolph: Computation	al Intelligence • Winter Term 2018/19 3		Rudolph: Computational Intelligence • Winter Term 2018/19 4

Optimization Basics	Lecture 10	Optimization Basics
Optimization Basics local solution $x^* \in X$: $\forall x \in N(x^*)$: $f(x^*) \leq f(x)$ \downarrow neighborhood of $x^* =$ bounded subset of X remark:	$\downarrow if x^* \text{ local solution then} \\f(x^*) \text{ local optimum / minimum} \\ X = \mathbb{R}^n, N_{\varepsilon}(x^*) = \{ x \in X : x - x^* _2 \le \varepsilon \}$	Optimization Basics Lecture 10 What makes optimization difficult? Some causes: • local optima (is it a global optimum or not?) • constraints (ill-shaped feasible region) • non-smoothness (weak causality) → strong causality needed! • discontinuities (⇒ nondifferentiability, no gradients) • lack of knowledge about problem (⇒ black / gray box optimization)
evidently, every global solution / optimu the reverse is wrong in general! example: f: $[a,b] \rightarrow \mathbb{R}$, global solution at x *	um is also local solution / optimum; $ \begin{array}{c} $	$ → f(x) = a_1 x_1 + + a_n x_n → max! with x_i \in \{0,1\}, a_i \in \mathbb{R} $ add constaint g(x) = b ₁ x ₁ + + b _n x _n ≤ b ⇒ NP-hard add capacity constraint to TSP ⇒ CVRP ⇒ still harder
U technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2018/19 5	C. Rudolph: Computational Intelligence • Winter Term 2018/ dortmund Evolutionary Algorithm Basics Lecture 10
Optimization Basics When using which optimization met mathematical algorithms		Evolutionary Algorithm Basics Lecture 10 idea: using biological evolution as metaphor and as pool of inspiration ⇒ interpretation of biological evolution as iterative method of improvement
 problem explicitly specified problem-specific solver available problem well understood ressources for designing algorithm affordable 	 problem given by black / gray box no problem-specific solver available problem poorly understood insufficient ressources for designing algorithm 	$ \begin{array}{ll} \mbox{feasible solution } x \in X = S_1 \ x \ \ x \ S_n & = \mbox{chromosome of individual} \\ \mbox{multiset of feasible solutions} & = \mbox{population: multiset of individuals} \\ \mbox{objective function } f: X \rightarrow \mathbb{R} & = \mbox{fitness function} \\ \end{array} $
 solution with proven quality 	 solution with satisfactory quality sufficient 	
required ⇒ don't apply EAs	⇒ EAs worth a try	often: $X = \mathbb{R}^n$, $X = \mathbb{B}^n = \{0,1\}^n$, $X = \mathbb{P}_n = \{\pi : \pi \text{ is permutation of } \{1,2,,n\} \}$ also : combinations like $X = \mathbb{R}^n \times \mathbb{B}^p \times \mathbb{P}_q$ or non-cartesian sets \Rightarrow structure of feasible region / search space defines representation of individual





olutionary Algorithm Basics	Lecture 10
election	
a) select parents that generate offspring	\rightarrow selection for reproduction
b) select individuals that proceed to next generation	\rightarrow selection for survival
ecessary requirements:	
selection steps must not favor worse individuals	
one selection step may be neutral (e.g. select unifor	rmly at random)
at least one selection step must favor better individu	uals
pically : selection only based on fitness values f(x)	of individuals
eldom : additionally based on individuals' chromoso	omes x (\rightarrow maintain diversity)

Evolutionary Algorithm Basics	Lecture 10	Evolutionary Algo	orithm Basics	Lec	ture 10
Selection methods		Selection method	S		
population P = (x ₁ , x ₂ ,, x _{μ}) with μ individuals		population $P = (x_1, $	$x_2,, x_\mu$) with μ i	individuals	
but already sensitive to additive shifts $g(x) = f(x)$ almost deterministic if large differences, almost u	th best ranks (no replacement) $g(x) = \exp(f(x)) > 0$ + c uniform if small differences	but: best individua • <i>k-ary tournamer</i> draw k individuals choose individual	according to their al selection base ems of fitness-pro al has only small at selection o uniformly at rand with best fitness	d on ranks oportional selection selection advantage (can dom (typically with replace (break ties at random) ed selection and does not survive: $\left(1 - \frac{1}{\mu}\right)$	ment) from P ${\binom{k\mu}{\geq}} < e^{-k}$
G. Rudi dortmund	olph: Computational Intelligence • Winter Term 2018/19 13	technische universit dortmund	ät	G. Rudolph: Computation	al Intelligence • Winter Term 2018/19 14
Evolutionary Algorithm Basics	Lecture 10	Evolutionary Algo	orithm Basics	Lec	ture 10
Selection methods without replacement		Selection method	s: Elitism		
population P = (x_1 , x_2 ,, x_μ) with μ parents and population Q = (y_1 , y_2 ,, y_λ) with λ offspring		Elitist selection: t	pest parent is not	replaced by worse individ	ual.
 (μ, λ)-selection or truncation selection on offs rank λ offspring according to their fitness select μ offspring with best ranks ⇒ best individual may get lost, λ ≥ μ required 	spring or comma-selection	t - Forced elitism: i	best survives with f best individual h	om parent and offspring, probability 1 nas not survived then re-in selected individual by pre	
 (μ+λ)-selection or truncation selection on par 	rents + offspring or plus-selection	method	P{ select best }	from parents & offspring	intrinsic elitism
merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks \Rightarrow best individual survives for sure		neutralfitness proportionaterank proportionatek-ary tournament $(\mu + \lambda)$ (μ, λ)	<1 <1 <1 <1 =1 =1	no no no yes no	no no no yes no
technische universität G. Rud dortmund	olph: Computational Intelligence • Winter Term 2018/19 15	tu technische universit			al Intelligence • Winter Term 2018/19

Evolutionary Algorithm Bas	sics	Lecture 10		Evolutionary Al	gorithm Basics		Le	ecture 10
Variation operators: depend	on representation			Variation in \mathbb{B}^n				Individuals $\in \{0, 1\}^r$
				 Mutation 				
mutation	\rightarrow alters a <u>single</u> individu	ual		a) local	\rightarrow choose index flip bit k, i.e., x	-	, n } uniformly	at random,
recombination	\rightarrow creates single offsprir	ng from two or more pa	arents	b) global	\rightarrow for each index	: k ∈ { 1,	., n }: flip bit k	with probability $p_m \in (0)$
may be applied				c) "nonlocal"	\rightarrow choose K indic	ces at rand	lom and flip bi	its with these indices
 exclusively (either recombination) exclusively (either recombination) 				d) inversion	→ choose start ir invert order of			
 exclusively (entire recombined) sequentially (typically, recombined) sequentially (typically, recombined) 	nbination before mutation)	; for each offspring	,	1 0 0 1 1	k=2 1 0 1 a) 1	0 0 1 0 b) 1	$ \begin{array}{c} \rightarrow & 0 \\ \mathbf{K=2} & 0 \\ 0 \\ \rightarrow & 0 \\ \mathbf{c} \end{array} $	1 k _s 1 0 k _e 0 d) 1
					<i>∽</i> /			
U technische universität dortmund	G. Rudolph: Con	nputational Intelligence • Winter To	Term 2018/19 17	technische univer dortmund		,	,	tional Intelligence • Winter Term 201
	· · · · · · · · · · · · · · · · · · ·	nputational Intelligence • Winter Te		technische univer dortmund	rsität	,	, Rudolph: Computat	,
U dortmund	· · · · · · · · · · · · · · · · · · ·		17	C U dortmund	rsität	,	, Rudolph: Computat	tional Intelligence • Winter Term 201
U dortmund Evolutionary Algorithm Base Variation in Bn	· · · · · · · · · · · · · · · · · · ·	Lecture 10	17	Evolutionary Al	rsität	G	, Rudolph: Computat	tional Intelligence • Winter Term 201
O dortmund Evolutionary Algorithm Bas /ariation in ^{®n} • Recombination (two parents)	· · · · · · · · · · · · · · · · · · ·	Lecture 10 Individuals ∈ { 0 n-1} uniformly at rando	17 0, 1 }n	Evolutionary Al Variation in B ⁿ • Recombination (a) diagonal cross	rsität I gorithm Basics (multiparent: ρ = #p ssover (2 < ρ < n)	G.	Rudolph: Computat	tional Intelligence • Winter Term 201 ecture 10 Individuals $\in \{0, 1\}^r$
O dortmund Evolutionary Algorithm Bas Variation in	sics draw cut-point k ∈ {1,,r	Lecture 10 Individuals ∈ { 0 n-1} uniformly at rando st parent,	17 0, 1 }n	e Recombination (a) diagonal cros → choose ρ	(multiparent: $\rho = \#p$ ssover (2 < ρ < n) – 1 distinct cut poir	G. arents)	chunks from d	tional Intelligence • Winter Term 201 ecture 10 Individuals ∈ { 0, 1 }r
dortmund Evolutionary Algorithm Bas Variation in ^{®n} Recombination (two parents) a) 1-point crossover →	sics draw cut-point k ∈ {1,,r choose first k bits from 1s	Lecture 10 Individuals ∈ { 0 n-1} uniformly at rando st parent, 2nd parent s uniformly at random; 1st parent, om 2nd parent,	17 0, 1 }n pm;	Evolutionary Al Variation in B ⁿ • Recombination (a) diagonal cross	rsität (multiparent: $\rho = \#p$ ssover (2 < ρ < n) – 1 distinct cut poir A ABBBC B BCCCD C CDDDA	G. arents) hts, select (CDDDD DAAAA ABBBB	chunks from d	tional Intelligence • Winter Term 201 ecture 10 Individuals $\in \{0, 1\}^r$
 Jortmund Evolutionary Algorithm Base Variation in Bⁿ Recombination (two parents) a) 1-point crossover → b) K-point crossover → 	sics draw cut-point $k \in \{1,,r$ choose first k bits from 1s choose last n-k bits from draw K distinct cut-points choose bits 1 to k_1 from 1 choose bits k_1 +1 to k_2 fro	Lecture 10 Individuals ∈ { 0 n-1} uniformly at rando st parent, 2nd parent s uniformly at random; 1st parent, om 2nd parent, om 1st parent, and so f	17 0, 1 } ⁿ om; forth	e Recombination (a) diagonal cros → choose ρ AAAAAAAA BBBBBBBB ccccccccc DDDDDDDDD b) gene pool cross	rsität Igorithm Basics (multiparent: $\rho = \#p$ ssover (2 < ρ < n) – 1 distinct cut poir A ABBBC B BCCCD C CDDDA D DAAB	G. arents) ats, select of CDDDD DAAAA ABBBB BBCCCC	chunks from d can gen otherwis at rando	tional Intelligence • Winter Term 201 ecture 10 Individuals $\in \{0, 1\}^r$ diagonals herate ρ offspring; se choose initial chunk om for single offspring
 Jortmund Evolutionary Algorithm Base Variation in Bⁿ Recombination (two parents) a) 1-point crossover → b) K-point crossover → 	sics draw cut-point $k \in \{1,,r$ choose first k bits from 1s choose last n-k bits from draw K distinct cut-points choose bits 1 to k_1 from 1 choose bits k_1 +1 to k_2 fro choose bits k_2 +1 to k_3 fro for each index i: choose b	Lecture 10 Individuals ∈ { 0 n-1} uniformly at rando st parent, 2nd parent s uniformly at random; 1st parent, om 2nd parent, om 1st parent, and so f	17 0, 1 }n om; forth ility	e Recombination (a) diagonal cros → choose ρ AAAAAAAA BBBBBBBB ccccccccc DDDDDDDDD b) gene pool cross	rsität gorithm Basics (multiparent: $\rho = \#p$ ssover (2 < ρ < n) – 1 distinct cut poir A ABBCC B BCCCD C CDDDA D DAAAB ossover (ρ > 2)	G. arents) ats, select of CDDDD DAAAA ABBBB BBCCCC	chunks from d can gen otherwis at rando	tional Intelligence • Winter Term 201 ecture 10 Individuals $\in \{0, 1\}^r$ diagonals herate ρ offspring; se choose initial chunk om for single offspring

Evolutionary Algorithm Basics	Lecture 10	Evolutionary Algorithm Basics	Lecture 10
Variation in \mathbb{P}_n	Individuals $\in X = \pi(1,, n)$	Variation in P _n	Individuals $\in X = \pi(1,, n)$
Mutation		Recombination (two parents)	
5 3 2 4 1 5 3	anslocation 2 4 1 4 3 1	 a) order-based crossover (OBX) select two indices k₁ and k₂ with k₁ ≤ k₂ uniformly a copy genes k₁ to k₂ from 1st parent to offspring (ket copy genes from left to right from 2nd parent, starting after position k₂ 	
K is positive random v its distribution may be E[K] and V[K] may con expectation variance	uniform, binomial, geometrical,; htrol mutation strength	 b) partially mapped crossover (PMX) - select two indices k₁ and k₂ with k₁ ≤ k₂ uniformly - copy genes k₁ to k₂ from 1st parent to offspring (ke - copy all genes not already contained in offspring f (keep positions) - from left to right: fill in remaining genes from 2nd participart 	$\begin{array}{c} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} 7 1 6 \mathbf{x} \\ \mathbf{x} 4 5 7 1 6 \mathbf{x} \end{array}$
	C. Budalah: Computational Intelligence - Winter Term 2019/10		
U technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2018/19 21		olph: Computational Intelligence • Winter Term 2018/
dortmund		G. Kuu	
Evolutionary Algorithm Basics	21		
	Lecture 10	Evolutionary Algorithm Basics	Lecture 10
Evolutionary Algorithm Basics Variation in \mathbb{R}^n • Mutation <u>additive:</u> $Y = X + Z$ (Z: n-di offspring = parent + mutation	Lecture 10 Individuals $X \in \mathbb{R}^n$ mensional random vector)	Evolutionary Algorithm Basics Variation in R ⁿ • Recombination (two parents) a) all crossover variants adapted from B ⁿ	Lecture 10
Evolutionary Algorithm Basics Variation in \mathbb{R}^n • Mutation <u>additive:</u> $Y = X + Z$ (Z: n-di	t Lecture 10 Individuals $X \in \mathbb{R}^n$ mensional random vector) t Definition Let $f_Z: \mathbb{R}^n \to \mathbb{R}^+$ be p.d.f. of r.v. Z. The set { $x \in \mathbb{R}^n : f_Z(x) > 0$ } is	Evolutionary Algorithm Basics Variation in \mathbb{R}^n • Recombination (two parents) a) all crossover variants adapted from \mathbb{B}^n b) intermediate $z = \xi \cdot x + (z)$ c) intermediate (per dimension) $\forall i : z_i = \xi_i \cdot x$	Lecture 10 Individuals $X \in \mathbb{R}^n$

G. Rudolph: Computational Intelligence • Winter Term 2018/19 23

τ

U technische universität dortmund

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2018/19 24

