

Optimization Basics

Lecture 10

remark:

evidently, every global solution / optimum is also local solution / optimum;
the reverse is wrong in general!

example:

f: $[a, b] \rightarrow \mathbb{R}$, global solution at x^{*}

	a	\mathbf{x}^{*}
\squaretechnische universität dortmund	G. Rudolph: Computational Intelligence \boldsymbol{b} Winter Term 2018/19	

Optimization Basics

technische universität
G. Rudolph: Computational Intelligence • Winter Term 2018/19

Optimization Basics

Lecture 10

What makes optimization difficult?

some causes:

- local optima (is it a global optimum or not?)
- constraints (ill-shaped feasible region)
- non-smoothness (weak causality) \qquad strong causality needed!
- discontinuities (\Rightarrow nondifferentiability, no gradients)
- lack of knowledge about problem (\Rightarrow black / gray box optimization)
$\rightarrow f(x)=a_{1} x_{1}+\ldots+a_{n} x_{n} \rightarrow$ max! with $x_{i} \in\{0,1\}, a_{i} \in \mathbb{R}$
add constaint $g(x)=b_{1} x_{1}+\ldots+b_{n} x_{n} \leq b$

$$
\begin{aligned}
& \Rightarrow x_{i}^{*}=1 \text { iff } a_{i}>0 \\
& \Rightarrow \text { NP-hard } \\
& \Rightarrow \text { still harder }
\end{aligned}
$$

add capacity constraint to TSP \Rightarrow CVRP
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2018/19
dortmund

Evolutionary Algorithm Basics

Lecture 10

idea: using biological evolution as metaphor and as pool of inspiration \Rightarrow interpretation of biological evolution as iterative method of improvement

feasible solution $x \in X=S_{1} \times \ldots \times S_{n}$	$=$ chromosome of individual
multiset of feasible solutions	$=$ population: multiset of individuals
objective function $f: X \rightarrow \mathbb{R}$	$=$ fitness function

often: $X=\mathbb{R}^{n}, X=\mathbb{B}^{n}=\{0,1\}^{n}, X=\mathbb{P}_{n}=\{\pi: \pi$ is permutation of $\{1,2, \ldots, n\}$
also : combinations like $X=\mathbb{R}^{n} \times \mathbb{B}^{p} \times \mathbb{P}_{\mathrm{q}} \quad$ or non-cartesian sets
\Rightarrow structure of feasible region / search space defines representation of individual

randomized search heuristics

- problem given by black / gray box
- no problem-specific solver available
- problem poorly understood
- insufficient ressources for designing algorithm
- solution with satisfactory quality sufficient
\Rightarrow EAs worth a try

When using which optimization method?

mathematical algorithms

- problem explicitly specified
- problem-specific solver available
- problem well understood
- ressources for designing algorithm affordable
- solution with proven quality required
\Rightarrow don't apply EAs

Lecture 10

Evolutionary Algorithm Basics

Lecture 10

algorithmic skeleton	initialize population \downarrow evaluation \downarrow
	parent selection \downarrow variation (yields offspring) \downarrow evaluation (of offspring) \downarrow survival selection (yields new population) \downarrow stop? $\downarrow \mathrm{Y}$ output: best individual found

technische universität	G. Rudolph: Computational Intelligence \cdot Winter Term 2018/19
dortmund	

Evolutionary Algorithm Basics

Lecture 10

Specific example: (1+1)-EA in \mathbb{B}^{n} for minimizing some $f: \mathbb{B}^{n} \rightarrow \mathbb{R}$
population size $=1$, number of offspring $=1$, selects best from $1+1$ individuals $\uparrow \uparrow$
parent offspring

1. initialize $X^{(0)} \in \mathbb{B}^{n}$ uniformly at random, set $t=0$
2. evaluate $f\left(X^{(t)}\right)$
3. select parent: $Y=X^{(t)}$
,

$$
\longrightarrow
$$

4. variation: flip each bit of Y independently with probability $p_{m}=1 / n$
5. evaluate $f(Y)$
6. selection: if $f(Y) \leq f\left(X^{(t)}\right)$ then $X^{(t+1)}=Y$ else $X^{(t+1)}=X^{(t)}$
7. if not stopping then $t=t+1$, continue at (3)
\square technische universität
G. Rudolph: Computational Intelligence • Winter Term 2018/19
technische
dortmund

Evolutionary Algorithm Basics

Lecture 10

Selection

(a) select parents that generate offspring
\rightarrow selection for reproduction
(b) select individuals that proceed to next generation \rightarrow selection for survival

necessary requirements:

- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)
- at least one selection step must favor better individuals
typically : selection only based on fitness values $f(x)$ of individuals
seldom : additionally based on individuals' chromosomes x (\rightarrow maintain diversity)

Evolutionary Algorithm Basics

Lecture 10

Selection methods

population $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mu}\right)$ with μ individuals

two approaches:

1. repeatedly select individuals from population with replacement
2. rank individuals somehow and choose those with best ranks (no replacement)

- uniform / neutral selection
choose index i with probability $1 / \mu$
- fitness-proportional selection choose index i with probability $\mathrm{s}_{\mathrm{i}}=\frac{f\left(x_{i}\right)}{\sum_{x \in P} f(x)}$
problems: $f(x)>0$ for all $x \in X$ required $\quad \Rightarrow g(x)=\exp (f(x))>0$
but already sensitive to additive shifts $g(x)=f(x)+c$
almost deterministic if large differences, almost uniform if small differences

G. Rudolph: Computational Intelligence • Winter Term 2018/19
technische universität
dortmund

Evolutionary Algorithm Basics

Lecture 10

Selection methods without replacement

population $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mu}\right)$ with μ parents and
population $\mathrm{Q}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\lambda}\right)$ with λ offspring

- (μ, λ)-selection or truncation selection on offspring or comma-selection rank λ offspring according to their fitness
select μ offspring with best ranks
\Rightarrow best individual may get lost, $\lambda \geq \mu$ required
- ($\mu+\lambda$)-selection or truncation selection on parents + offspring or plus-selection merge λ offspring and μ parents rank them according to their fitness select μ individuals with best ranks
\Rightarrow best individual survives for sure

Evolutionary Algorithm Basics

Lecture 10

Selection methods

population $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mu}\right)$ with μ individuals

- rank-proportional selection

order individuals according to their fitness values
assign ranks
fitness-proportional selection based on ranks
\Rightarrow avoids all problems of fitness-proportional selection
but: best individual has only small selection advantage (can be lost!)

- k-ary tournament selection

draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random)
\Rightarrow has all advantages of rank-based selection and probability that best individual does not survive: $\left.\begin{array}{rl}\left(1-\frac{1}{\mu}\right.\end{array}\right)^{k \mu}<e^{-k}$

[^0]G. Rudolph: Computational Intelligence • Winter Term 2018/19

Evolutionary Algorithm Basics

Lecture 10

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- Intrinsic elitism: method selects from parent and offspring, best survives with probability 1
- Forced elitism: if best individual has not survived then re-injection into population, i.e., replace worst selected individual by previously best parent

method	P\{ select best \}	from parents \& offspring	intrinsic elitism
neutral	<1	no	no
fitness proportionate	<1	no	no
rank proportionate	<1	no	no
k-ary tournament	<1	no	no
$(\mu+\lambda)$	$=1$	yes	yes
(μ, λ)	$=1$	no	no

Evolutionary Algorithm Basics

Lecture 10

Variation operators: depend on representation
mutation
\rightarrow alters a single individual
recombination \rightarrow creates single offspring from two or more parents
may be applied

- exclusively (either recombination or mutation) chosen in advance
- exclusively (either recombination or mutation) in probabilistic manner
- sequentially (typically, recombination before mutation); for each offspring
- sequentially (typically, recombination before mutation) with some probability
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2018/19
dortmund

Lecture 10

Evolutionary Algorithm Basics

Variation in \mathbb{B}^{n}

Individuals $\in\{0,1\}^{n}$

- Recombination (two parents)
a) 1-point crossover
b) K-point crossover
c) uniform crossover
\rightarrow for each index i: choose bit i with equal probability from 1st or 2nd parent

1	0
0	1
0	1
1	1

\& 1

\& 1

\& 1\end{aligned}\)
a)

	1
	0
	0
	0
	1

1
1
0
1
c) $\begin{array}{lll}0 & 1 \\ 1 & 1\end{array}$

Evolutionary Algorithm Basics

Lecture 10

Variation in \mathbb{B}^{n}

- Mutation
a) local $\quad \rightarrow$ choose index $k \in\{1, \ldots, n\}$ uniformly at random, flip bit k, i.e., $x_{k}=1-x_{k}$
b) global
\rightarrow for each index $k \in\{1, \ldots, n\}$: flip bit k with probability $p_{m} \in(0,1)$
c) "nonlocal"
\rightarrow choose K indices at random and flip bits with these indices
d) inversion
\rightarrow choose start index k_{s} and end index k_{e} at random invert order of bits between start and end index

1		1		0	\rightarrow	0		1
0	$\mathrm{k}=2$	1		\bigcirc		0	$\mathrm{k}_{\text {s }}$	1
0		0		1	$\mathrm{K}=2$	0		0
1		1		0	\rightarrow	0	$\mathrm{k}_{\text {e }}$	0
1	a)	1	b)	1	c)	1	d)	1

technische universität
G. Rudolph: Computational Intelligence • Winter Term 2018/19
dortmund

Evolutionary Algorithm Basics

Lecture 10

Variation in \mathbb{B}^{n}

Individuals $\in\{0,1\}^{n}$

- Recombination (multiparent: $\rho=$ \#parents)
a) diagonal crossover $(2<\rho<n)$
\rightarrow choose $\rho-1$ distinct cut points, select chunks from diagonals
\(\left.$$
\begin{array}{ll}\text { AAAAAAAAAAA } \\
\text { BBBBBBBBBB } \\
\text { CCCCCCCCCC } \\
\text { DDDDDDDDDD }\end{array}
$$ \quad \begin{array}{l}ABBBCCDDDD

BCCCDDAAAA

CDDDAABBBB

DAAABBCCCC\end{array}\right\}\)| can generate ρ offspring; |
| :--- |
| otherwise choose initial chunk |
| at random for single offspring |

b) gene pool crossover ($\rho>2$)
\rightarrow for each gene: choose donating parent uniformly at random
technische universität
dortmund
G. Rudolph: Computational Intelligence • Winter Term 2018/19

Evolutionary Algorithm Basics

Lecture 10

Variation in \mathbb{P}_{n}

Individuals $\in \mathrm{X}=\pi(1, \ldots, \mathrm{n})$

- Mutation
a) local \rightarrow 2-swap \quad 1-translocation
b) global
\rightarrow draw number K of 2-swaps, apply 2-swaps K times
K is positive random variable;
its distribution may be uniform, binomial, geometrical, ...; $\mathrm{E}[\mathrm{K}]$ and $\mathrm{V}[\mathrm{K}]$ may control mutation strength

technische universität
G. Rudolph: Computational Intelligence • Winter Term 2018/19
dortmund

Evolutionary Algorithm Basics

Lecture 10

Variation in \mathbb{R}^{n}

Individuals $\mathrm{X} \in \mathbb{R}^{\mathrm{n}}$

- Mutation
additive:

$$
\begin{gathered}
\mathrm{Y} \\
\underset{\uparrow}{\mathrm{X}}+\mathrm{Z} \\
\text { offspring }
\end{gathered}=\text { parent }+ \text { mutation }
$$

(Z: n-dimensional random vector)
a) local

$$
{ }_{0}^{\mathrm{f}_{\mathrm{z}}} \overbrace{\mathrm{x}}^{\overbrace{\mathrm{x}}} f_{Z}(x)=\frac{4}{3}\left(1-x^{2}\right) \cdot 1_{[-1,1]}(x)
$$

b) nonlocal $\rightarrow Z$ with unbounded support

$$
f_{Z}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

Definition

Let $\mathrm{f}_{\mathrm{z}}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{+}$be p.d.f. of r.v. Z . The set $\left\{x \in \mathbb{R}^{n}: f_{z}(x)>0\right\}$ is termed the support of Z.

Evolutionary Algorithm Basics

Lecture 10

Variation in \mathbb{P}_{n}
Individuals $\in \mathrm{X}=\pi(1, \ldots, \mathrm{n})$

- Recombination (two parents)
a) order-based crossover ($O B X$)

| 2 | 3 | 5 | 7 | 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |$| 4$

- select two indices k_{1} and k_{2} with $k_{1} \leq k_{2}$ uniformly at random
- copy genes k_{1} to k_{2} from $1^{\text {st }}$ parent to offspring (keep positions)
- copy genes from left to right from $2^{\text {nd }}$ parent,
starting after position k_{2}

6	4	5	3	7	2	1
\times	\times	\times	7	1	6	\mathbf{x}
5	3	2	7	1	6	4

b) partially mapped crossover (PMX)

- copy genes k_{1} to k_{2} from $1^{\text {st }}$ parent to offspring (keep positions)
- copy all genes not already contained in offspring from $2^{\text {nd }}$ parent (keep positions)
- from left to right: fill in remaining genes from $2^{\text {nd }}$ parent
technische universität
technische
dortmund

Lecture 10

Evolutionary Algorithm Basics

Variation in \mathbb{R}^{n}

Individuals $X \in \mathbb{R}^{n}$

- Recombination (two parents)
a) all crossover variants adapted from \mathbb{B}^{n}
b) intermediate

$$
z=\xi \cdot x+(1-\xi) \cdot y \text { with } \xi \in[0,1]
$$

c) intermediate (per dimension) $\quad \forall i: z_{i}=\xi_{i} \cdot x_{i}+\left(1-\xi_{i}\right) \cdot y_{i}$ with $\xi_{i} \in[0,1]$
d) discrete

$$
\forall i: z_{i}=B_{i} \cdot x_{i}+\left(1-B_{i}\right) \cdot y_{i} \text { with } B_{i} \sim B\left(1, \frac{1}{2}\right)
$$

e) simulated binary crossover (SBX)
\rightarrow for each dimension with probability p_{c}

Evolutionary Algorithm Basics

Lecture 10

Variation in \mathbb{R}^{n}

Individuals $\mathrm{X} \in \mathbb{R}^{\mathrm{n}}$

- Recombination (multiparent), $\rho \geq 3$ parents
a) intermediate $z=\sum_{k=1}^{\rho} \xi^{(k)} x_{i}^{(k)}$ where $\sum_{k=1}^{\rho} \xi^{(k)}=1$ and $\xi^{(k)} \geq 0$
(all points in convex hull)
b) intermediate (per dimension) $\forall i: z_{i}=\sum_{k=1}^{\rho} \xi_{i}^{(k)} x_{i}^{(k)}$

$$
\forall i: z_{i} \in\left[\min _{k}\left\{x_{i}^{(k)}\right\}, \max _{k}\left\{x_{i}^{(k)}\right\}\right]
$$

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a strictly quasiconvex function. If $f(x)=f(y)$ for some $x \neq y$ then
every offspring generated by intermediate recombination is better than its parents.

Proof:

f strictly quasiconvex $\Rightarrow f(\xi \cdot x+(1-\xi) \cdot y)<\max \{f(x), f(y)\}$ for $0<\xi<1$
since $f(x)=f(y) \Rightarrow \max \{f(x), f(y)\}=\min \{f(x), f(y)\}$

$$
\Rightarrow f(\xi \cdot x+(1-\xi) \cdot y)<\min \{f(x), f(y)\} \text { for } 0<\xi<1
$$

Theorem
 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function and $f(x)<f(y)$ for some $x \neq y$. If $(y-x)^{‘} \nabla f(x)<0$ then there is a positive probability that an offspring generated by intermediate recombination is better than both parents.
 Evolutionary Algorithm Basics
 Lecture 10

Proof:

If $d^{\prime} \nabla f(x)<0$ then $d \in \mathbb{R}^{n}$ is a direction of descent, i.e.
$\exists \tilde{s}>0: \forall s \in(0, \tilde{s}]: f(x+s \cdot d)<f(x)$.
Here: $d=y-x$ such that $\mathrm{P}\{f(\xi x+(1-\xi) y)<f(x)\} \geq \frac{\tilde{s}}{\|d\|}>0$.
sublevel set $S_{\alpha}=\left\{x \in \mathbb{R}^{n}: f(x)<\alpha\right\}$
technische universität

[^0]: technische universität
 technisch

