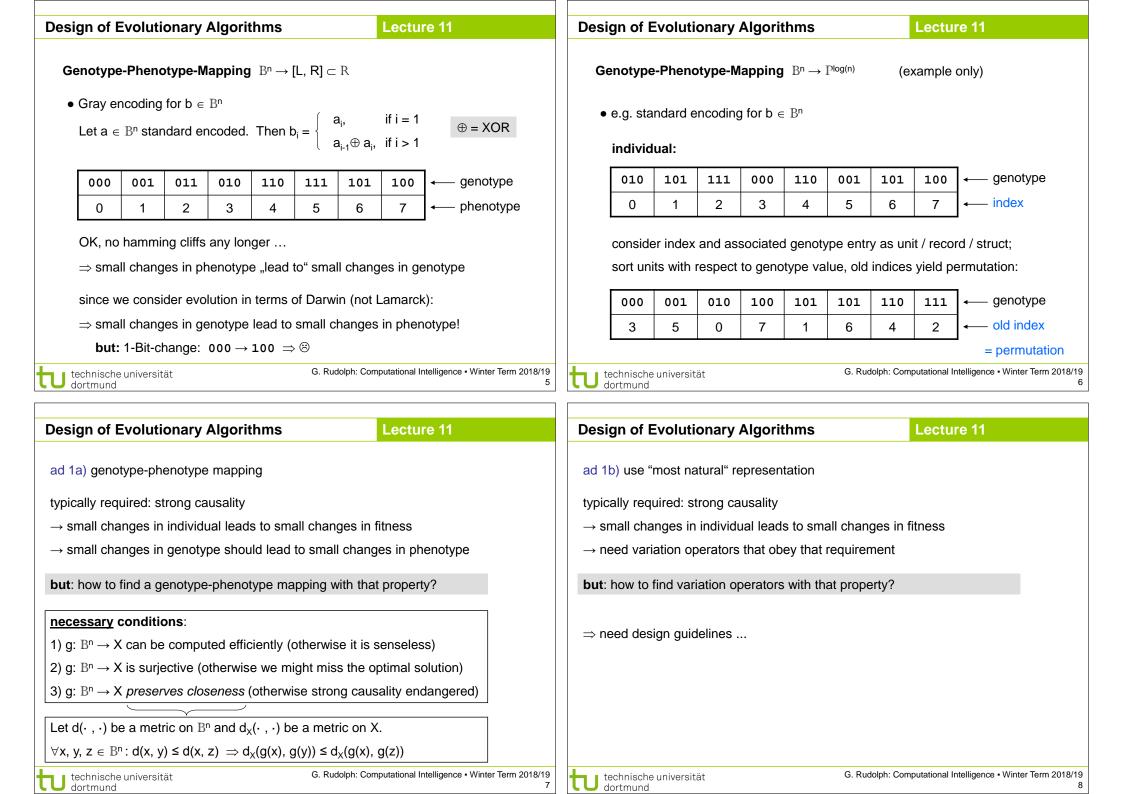
technische universität dortmund	Design of Evolutionary Algorithms Lecture 11
	Three tasks:
	1. Choice of an appropriate problem representation.
	2. Choice / design of variation operators acting in problem representation.
Computational Intelligence	3. Choice of strategy parameters (includes initialization).
Winter Term 2018/19	
	ad 1) different "schools":
	 (a) operate on binary representation and define genotype/phenotype mapping + can use standard algorithm – mapping may induce unintentional bias in search
Prof. Dr. Günter Rudolph	
Lehrstuhl für Algorithm Engineering (LS 11)	(b) no doctrine: use "most natural" representation
Fakultät für Informatik	 must design variation operators for specific representation if design done properly then no bias in search
TU Dortmund	
	G. Rudolph: Computational Intelligence • Winter Term 2018/19 dortmund 2
Design of Evolutionary Algorithms Lecture 11	Design of Evolutionary Algorithms Lecture 11
ad 1a) genotype-phenotype mapping	Genotype-Phenotype-Mapping $B^n \rightarrow [L, R] \subset R$
original problem f: $X \to \mathbb{R}^d$	• Standard encoding for $b \in B^n$
scenario: no standard algorithm for search space X available $x = L + \frac{R - L}{2^n - 1} \sum_{i=0}^{n-1} b_{n-i} 2^i$	
$\mathbf{X} \longrightarrow \mathbb{R}^{d}$	\rightarrow Problem: hamming cliffs
g	
9	000 001 010 011 100 101 110 111 - genotype
• standard EA performs variation on binary strings $b \in B^n$	0 1 2 3 4 5 6 7 ← phenotype
• fitness evaluation of individual b via $(f \circ g)(b) = f(g(b))$	$ \qquad \backslash / \backslash / \backslash / \backslash / \land / \land / \land / \land / \land / \land /$
where g: $B^n \rightarrow X$ is genotype-phenotype mapping	1 Bit 2 Bit 1 Bit 3 Bit 1 Bit 2 Bit 1 Bit $L = 0, R = 7$
selection operation independent from representation	↑ n = 3 Hamming cliff
Selection operation independent from representation Jest and the selection operation independent from representation G. Rudolph: Computational Intelligence • Winter Term 2018/19	Lechnische universität G. Rudolph: Computational Intelligence • Winter Term 2018/19
U dortmund 3	U dortmund 4



ad 2) design guidelines for variation operators in binary search space $X = B^n$ variation by k-point or uniform crossover and subsequence a) <i>reachability</i> : regardless of the output of crossover we can move from $x \in B^n$ to $y \in B^n$ in 1 step with p $p(x, y) = p_m^{H(x,y)} (1 - p_m)^{n - H(x,y)} > 0$	uent mutation
obability bounded from 0 a) <i>reachability</i> : regardless of the output of crossover we can move from $x \in B^n$ to $y \in B^n$ in 1 step with p	
where $H(x,y)$ is Hamming distance between x and pe of distributions;	0 I y.
9 UU dortmund	: Computational Intelligence • Winter Term 2018/1 1 Lecture 11
Formally:	
Definition:	
Let X be discrete random variable (r.v.) with $p_k = P\{X\}$ The quantity $H(X) = -\sum_{k \in K} p_k \log p_k$	
is called the entropy of the distribution of X. If X is $f_X(\cdot)$ then the entropy is given by	a continuous r.v. with p.d.f.
$\int_{-\infty}^{\infty} d(x) d(x)$	
	appe of distributions; oproaching optimumSince min{ $p(x,y): x,y \in B^n } = \delta > 0$ we are dominant since min{ $p(x,y): x,y \in B^n } = \delta > 0$ we are dominant G. Rudolph:Interface - Winter Term 2018/19 9Interface - Winter Term 2018/19 9G. Rudolph: G. Rudolph: 9Interface - Winter Term 2018/19 9Design of Evolutionary AlgorithmsInterface - Winter Term 2018/19 9Design of Evolution of X. If X is 17 9Interface - Minter - Min

Excursion: Maximum Entropy Distributions Lecture 11

Excursion: Maximum Entropy Distributions

Lecture 11

Knowledge available:

Discrete distribution with support { $x_1, x_2, ..., x_n$ } with $x_1 < x_2 < ..., x_n < \infty$

$$p_k = \mathsf{P}\{X = x_k\}$$

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \rightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right)$$

technische universität
dortmund
G. Rudolph:

G. Rudolph: Computational Intelligence - Winter Term 2018/19 13

Excursion: Maximum Entropy Distributions

Lecture 11

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with $p_k = P \{X = k\}$ and E[X] = v

 \Rightarrow leads to nonlinear constrained optimization problem:

$$\begin{aligned} &-\sum_{k=1}^{n} p_k \log p_k \quad \rightarrow \max! \\ &\text{s.t.} \quad \sum_{k=1}^{n} p_k = 1 \quad \text{and} \quad \sum_{k=1}^{n} k p_k = \nu \end{aligned}$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

technische universität dortmund

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right)$$

partial derivatives:

$$\frac{\partial L(p,a)}{\partial p_k} = -1 - \log p_k + a \stackrel{!}{=} 0 \qquad \Rightarrow p_k \stackrel{!}{=} e^{a-1}$$

$$\frac{\partial L(p,a)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$$

$$\Rightarrow \sum_{k=1}^n p_k = \sum_{k=1}^n e^{a-1} = n e^{a-1} \stackrel{!}{=} 1 \quad \Leftrightarrow \quad e^{a-1} = \frac{1}{n}$$

$$\lim_{k \to \infty} \frac{1}{2} e^{a-1} = \frac{1}{n}$$

Excursion: Maximum Entropy Distributions

```
Lecture 11
```

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

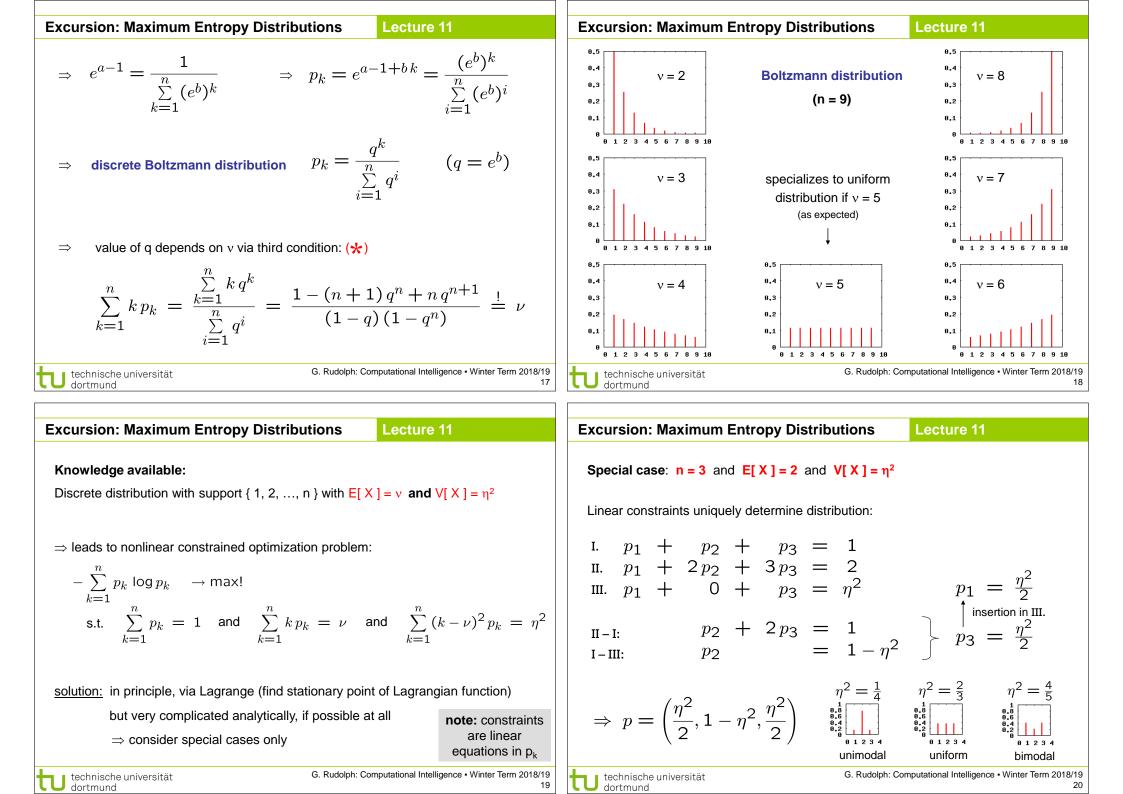
partial derivatives:

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=1}^n k p_k - \nu \stackrel{!}{=} 0 \qquad \sum_{k=1}^n p_k = e^{a-1} \sum_{k=1}^n (e^b)^k \stackrel{!}{=} 1$$

(continued on next slide)



Excursion: Maximum Entropy Distributions Lecture 11

Knowledge available:

Discrete distribution with unbounded support { 0, 1, 2, ... } and E[X] = v

 \Rightarrow leads to <u>infinite-dimensional</u> nonlinear constrained optimization problem:

$$\begin{aligned} &-\sum_{k=0}^{\infty} p_k \log p_k \quad \to \max! \\ &\text{s.t.} \quad \sum_{k=0}^{\infty} p_k = 1 \qquad \text{and} \qquad \sum_{k=0}^{\infty} k p_k = \nu \end{aligned}$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

technische universität dortmund

_

ligence • Winter Term 2018/19 21 **Excursion: Maximum Entropy Distributions**

Lecture 11

$$L(p,a,b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

partial derivatives:

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=0}^{\infty} p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=0}^{\infty} k p_k - \nu \stackrel{!}{=} 0 \qquad \qquad \sum_{k=0}^{\infty} p_k = e^{a-1} \sum_{k=0}^{\infty} (e^b)^k \stackrel{!}{=} 1$$
(continued on next slide)
(continued on next slide)
(continued on next slide)
(continued on next slide)

Excursion: Maximum Entropy Distributions

$$\Rightarrow e^{a-1} = \frac{1}{\sum_{k=0}^{\infty} (e^b)^k} \Rightarrow p_k = e^{a-1+b\,k} = \frac{(e^b)^k}{\sum_{i=0}^{\infty} (e^b)^i}$$
set $q = e^b$ and insists that $q < 1 \Rightarrow \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$ insert

$$\Rightarrow p_k = (1-q) q^k \text{ for } k = 0, 1, 2, \dots \text{ geometrical distribution}$$
it remains to specify q; to proceed recall that $\sum_{k=0}^{\infty} k q^k = \frac{q}{(1-q)^2}$

curs	sion: Maximum Entropy Distributions Lecture 11
\Rightarrow	value of q depends on v via third condition: (\bigstar)
	$\sum_{k=0}^{\infty} k p_k = \frac{\sum_{k=0}^{\infty} k q^k}{\sum_{i=0}^{\infty} q^i} = \frac{q}{1-q} \stackrel{!}{=} \nu$
⇒	$q = \frac{\nu}{\nu+1} = 1 - \frac{1}{\nu+1}$
⇒	$p_k = \frac{1}{\nu+1} \left(1 - \frac{1}{\nu+1} \right)^k$
∎ tech	nnische universität G. Rudolph: Computational Intelligence • Winter Term 201

