
Computational Intelligence
Winter Term 2018/19

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
2

Towards CMA-ES

mutation: Y = X + Z Z ~ N(0, C) multinormal distribution

maximum entropy distribution for
support Rn, given expectation
vector and covariance matrix

how should we choose covariance matrix C?

unless we have not learned something about the problem during search

⇒ don‘t prefer any direction!

⇒ covariance matrix C = In (unit matrix)
x x

C = In

x

C = diag(s1,...,sn) C orthogonal

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
3

Towards CMA-ES

claim: mutations should be aligned to isolines of problem (Schwefel 1981)

if true then covariance matrix should
be inverse of Hessian matrix!

⇒ assume f(x) ≈ ½ x‘Ax + b‘x + c ⇒ H = A

Z ~ N(0, C) with density

since then many proposals how to adapt the covariance matrix

⇒ extreme case: use n+1 pairs (x, f(x)),

 apply multiple linear regression to obtain estimators for A, b, c

 invert estimated matrix A! OK, but: O(n6)! (Rudolph 1992)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
4

Towards CMA-ES

doubts: are equi-aligned isolines really optimal?

most (effective) algorithms behave like this:

run roughly into negative gradient direction,
sooner or later we approach longest main principal axis of Hessian,

now negative gradient direction coincidences with direction to optimum,
which is parallel to longest main principal axis of Hessian,
which is parallel to the longest main principal axis of the inverse covariance matrix
 (Schwefel OK in this situation)

principal axis

should point into
negative gradient
direction!
(proof next slide)

Lecture 11

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
5

Towards CMA-ES

Z = rQu, A = B‘B, B = Q-1

if Qu were deterministic ...

⇒ set Qu = -∇f(x) (direction of steepest descent)

Lecture 11

Apart from (inefficient) regression, how can we get matrix elements of Q?

Towards CMA-ES

⇒ iteratively: C(k+1) = update(C(k), Population(k))

basic constraint: C(k) must be positive definite (p.d.) and symmetric for all k ≥ 0,

 otherwise Cholesky decomposition impossible: C = Q‘Q

Lemma

Let A and B be quadratic matrices and α, β > 0.

a) A, B symmetric ⇒ α A + β B symmetric.

b) A positive definite and B positive semidefinite ⇒ α A + β B positive definite

Proof:
ad a) C = α A + β B symmetric, since cij = α aij + β bij = α aji + β bji = cji

ad b) ∀x ∈ Rn \ {0}: x‘(αA + β B) x = α x‘Ax + β x‘Bx

> 0 ≥ 0

> 0
■

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
6

Lecture 11

Theorem

A quadratic matrix C(k) is symmetric and positive definite for all k ≥ 0,

if it is built via the iterative formula C(k+1) = αk C(k) + βk vk v‘k

where C(0) = In, vk ≠ 0, αk > 0 and liminf βk > 0.

Proof:

If v ≠ 0, then matrix V = vv‘ is symmetric and positive semidefinite, since

• as per definition of the dyadic product vij = vi ⋅ vj = vj ⋅ vi = vji for all i, j and

• for all x ∈ Rn : x‘ (vv‘) x = (x‘v) ⋅ (v‘x) = (x‘v)2 ≥ 0.
Thus, the sequence of matrices vkv‘k is symmetric and p.s.d. for k ≥ 0.
Owing to the previous lemma matrix C(k+1) is symmetric and p.d., if

C(k) is symmetric as well as p.d. and matrix vkv‘k is symmetric and p.s.d.

Since C(0) = In symmetric and p.d. it follows that C(1) is symmetric and p.d.

Repetition of these arguments leads to the statement of the theorem. ■

Towards CMA-ES

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
7

Lecture 11

Idea: Don‘t estimate matrix C in each iteration! Instead, approximate iteratively!
(Hansen, Ostermeier et al. 1996ff.)

→ Covariance Matrix Adaptation Evolutionary Algorithm (CMA-EA)

Set initial covariance matrix to C(0) = In

C(t+1) = (1-η) C(t) + η wi (xi:λ – m(t)) (xi:λ – m(t))‘
η : “learning rate“ ∈ (0,1)

wi : weights; mostly 1/µ

sorting: f(x1:λ) ≤ f(x2:λ) ≤ ... ≤ f(xλ:λ)

m = mean of all selected parents complexity:
O(µn2 + n3)

CMA-ES

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
8

Caution: must use mean m(t) of “old“ selected parents; not „new“ mean m(t+1) !
⇒ Seeking covariance matrix of fictitious distribution pointing in gradient direction!

Lecture 11

State-of-the-art: CMA-EA (currently many variants)

→ many successful applications in practice

available in WWW:

• http://www.lri.fr/~hansen/cmaes_inmatlab.html

• http://shark-project.sourceforge.net/ (EAlib, C++)

• …

CMA-ES

C, C++, Java
Fortran, Python,
Matlab, R, Scilab

G. Rudolph: Computational Intelligence ▪ Winter Term 2018/19
9

advice:

before designing your own new method
or grabbing another method with some fancy name ...
try CMA-ES − it is available in most software libraries and often does the job!

