Computational Intelligence

Winter Term 2019/20

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

- Fuzzy sets
- Axioms of fuzzy complement, t- and s-norms
- Generators
- Dual tripels

Fuzzy Sets

Lecture 02

Considered so far:

Standard fuzzy operators

- $A^{c}(x)=1-A(x)$
- $(A \cap B)(x)=\min \{A(x), B(x)\}$
- $(A \cup B)(x)=\max \{A(x), B(x)\}$
\Rightarrow Compatible with operators for crisp sets
with membership functions with values in $\mathbb{B}=\{0,1\}$
\exists Non-standard operators? \Rightarrow Yes! Innumerable many!
- Defined via axioms.
- Creation via generators.

Fuzzy Complement: Axioms

Definition

A function $\mathrm{c}:[0,1] \rightarrow[0,1]$ is a fuzzy complement iff
(A1) $\quad c(0)=1$ and $c(1)=0$.
(A2) $\quad \forall \mathrm{a}, \mathrm{b} \in[0,1]: \mathrm{a} \leq \mathrm{b} \Rightarrow \mathrm{c}(\mathrm{a}) \geq \mathrm{c}(\mathrm{b})$.
monotone decreasing
"nice to have":
(A3) $\quad \mathrm{c}(\cdot)$ is continuous.
(A4) $\quad \forall \mathrm{a} \in[0,1]: \mathrm{c}(\mathrm{c}(\mathrm{a}))=\mathrm{a}$

Examples:

a) standard fuzzy complement $\mathrm{c}(\mathrm{a})=1-\mathrm{a}$

$$
\begin{array}{ll}
\text { ad (A1): } c(0)=1-0=1 \text { and } c(1)=1-1=0 & \text { ad (A3): } \\
\text { ad (A2): } c^{4}(a)=-1<0 \text { (monotone decreasing) } & \text { ad (A4): } 1-(1-a)=a
\end{array}
$$

Fuzzy Complement: Examples

Lecture 02

b) $c(a)=\left\{\begin{array}{ll}1 & \text { if } a \leq t \\ 0 & \text { otherwise }\end{array} \quad\right.$ for some $t \in(0,1)$

ad (A1): $c(0)=1$ since $0<t$ and $c(1)=0$ since $t<1$.
ad (A2): monotone (actually: constant) from 0 to t and t to 1 , decreasing at t
ad (A3): not valid \rightarrow discontinuity at t
ad (A4): not valid \rightarrow counter example

$$
c(c(1 / 4))=c(1)=0 \neq 1 / 4 \text { for } t=1 / 2
$$

technische universität
G. Rudolph: Computational Intelligence • Winter Term 2019/20
dortmund

Fuzzy Complement: Examples

Lecture 02

d) $\mathrm{c}(\mathrm{a})=\frac{1-a}{1+\lambda a}$ for $\lambda>-1$

Sugeno class

ad (A1): $c(0)=1$ and $c(1)=0$
$\operatorname{ad}(\mathrm{A} 2): c(a) \geq c(b) \Leftrightarrow \frac{1-a}{1+\lambda a} \geq \frac{1-b}{1+\lambda b} \Leftrightarrow$

$$
\begin{aligned}
& (1-a)(1+\lambda b) \geq(1-b)(1+\lambda a) \Leftrightarrow \\
& b(\lambda+1) \geq a(\lambda+1) \Leftrightarrow b \geq a
\end{aligned}
$$

ad (A3): is continuous as a composition of continuous functions
$\left.\operatorname{ad}(\mathrm{A} 4): c(c(a))=c\left(\frac{1-a}{1+\lambda a}\right)=\frac{1-\frac{1-a}{1+\lambda a}}{1+\lambda \frac{1-a}{1+\lambda a}}=\frac{a(\lambda+1)}{\lambda+1}=a\right\}$

Fuzzy Complement: Examples

Lecture 02

c) $\mathrm{c}(\mathrm{a})=\frac{1+\cos (\pi a)}{2}$
ad (A1): $c(0)=1$ and $c(1)=0$
ad (A2): $\quad C^{\prime}(a)=-1 / 2 \pi \sin (\pi a)<0 \quad$ since $\sin (\pi a)>0$ for $a \in(0,1)$
ad (A3): is continuous as a composition of continuous functions
ad (A4): not valid \rightarrow counter example

$$
c\left(c\left(\frac{1}{3}\right)\right)=c\left(\frac{3}{4}\right)=\frac{1}{2}\left(1-\frac{1}{\sqrt{2}}\right) \neq \frac{1}{3}
$$

technische universität
G. Rudolph: Computational Intelligence • Winter Term 2019/20
technische

Fuzzy Complement: Examples

e) $c(a)=\left(1-a^{w}\right)^{1 / w}$ for $w>0$

Yager class
ad (A1): $c(0)=1$ and $c(1)=0$
ad (A2): $\quad\left(1-a^{w}\right)^{1 / w} \geq\left(1-b^{w}\right)^{1 / w} \Leftrightarrow 1-a^{w} \geq 1-b^{w} \Leftrightarrow$

$$
a^{w} \leq b^{w} \Leftrightarrow a \leq b
$$

Lecture 02

ad (A3): is continuous as a composition of continuous functions

$$
\operatorname{ad}(\mathrm{A} 4): c(c(a))=c\left(\left(1-a^{w}\right)^{\frac{1}{w}}\right)=\left(1-\left[\left(1-a^{w}\right)^{\frac{1}{w}}\right]^{w}\right)^{\frac{1}{w}}
$$

$$
=\left(1-\left(1-a^{w}\right)\right)^{\frac{1}{w}}=\left(a^{w}\right)^{\frac{1}{w}}=a
$$

Fuzzy Complement: Fixed Points

Lecture 02

Theorem

If function $c:[0,1] \rightarrow[0,1]$ satisfies axioms (A1) and (A2) of fuzzy complement then it has at most one fixed point a^{*} with $\mathrm{c}\left(\mathrm{a}^{*}\right)=\mathrm{a}^{*}$.

Proof:

one fixed point \rightarrow see example (a) \rightarrow intersection with bisectrix

no fixed point \rightarrow see example (b) \rightarrow no intersection with bisectrix

assume $\exists \mathrm{n}>1$ fixed points, for example a^{*} and b^{*} with $\mathrm{a}^{*}<\mathrm{b}^{*}$
$\Rightarrow c\left(a^{*}\right)=a^{*}$ and $c\left(b^{*}\right)=b^{*} \quad$ (fixed points)
$\Rightarrow \mathrm{c}\left(\mathrm{a}^{*}\right)<\mathrm{c}\left(\mathrm{b}^{*}\right)$ with $\mathrm{a}^{*}<\mathrm{b}^{*}$ impossible if $\mathrm{c}(\cdot)$ is monotone decreasing
\Rightarrow contradiction to axiom (A2)
\square technische universität
G. Rudolph: Computational Intelligence • Winter Term 2019/20

Fuzzy Complement: $1^{\text {st }}$ Characterization

Lecture 02

Theorem

c: $[0,1] \rightarrow[0,1]$ is involutive fuzzy complement iff \exists continuous function $\mathrm{g}:[0,1] \rightarrow \mathbb{R}$ with

- $g(0)=0$
- strictly monotone increasing
- $\forall a \in[0,1]: c(a)=g^{(-1)}(g(1)-g(a))$.
- $\int g^{(-1)}(x)$ pseudo-inverse

Examples

a) $g(x)=x$
b) $g(x)=x^{w}$

$$
\Rightarrow g^{-1}(\mathrm{x})=\mathrm{x}
$$

$$
\Rightarrow c(a)=1-a
$$

(Standard)
(Yager class, w > 0)
c) $g(x)=\log (x+1) \Rightarrow g^{-1}(x)=e^{x}-1 \Rightarrow c(a)=\exp (\log (2)-\log (a+1))-1$

$$
=\frac{1-a}{1+a} \quad(\text { Sugeno class. } \lambda=1)
$$

Fuzzy Complement: Fixed Points

Lecture 02

Theorem

If function $c:[0,1] \rightarrow[0,1]$ satisfies axioms $(A 1)-(A 3)$ of fuzzy complement then it has exactly one fixed point a^{*} with $\mathrm{c}\left(\mathrm{a}^{*}\right)=\mathrm{a}^{*}$.

Proof:

Intermediate value theorem \rightarrow
If $c(\cdot)$ continuous (A3) and $c(0) \geq c(1)$ (A1/A2)
then $\forall v \in[c(1), c(0)]=[0,1]: \exists a \in[0,1]: c(a)=v$.
\Rightarrow there must be an intersection with bisectrix
\Rightarrow a fixed point exists and by previous theorem there are no other fixed points!

Examples:

(a) $\mathrm{c}(\mathrm{a})=1-\mathrm{a}$
$\Rightarrow \mathrm{a}=1-\mathrm{a}$
$\Rightarrow a^{*}=1 / 2$
(b) $c(a)=\left(1-a^{w}\right)^{1 / w}$
$\Rightarrow \mathrm{a}=\left(1-\mathrm{a}^{\mathrm{w}}\right)^{1 / \mathrm{w}}$

$$
\Rightarrow a^{*}=(1 / 2)^{1 / w}
$$

,
| technische universität
G. Rudolph: Computational Intelligence • Winter Term 2019/20
dortmund

Fuzzy Complement: 1 $^{\text {st }}$ Characterization Lecture 02

Examples

d) $g(a)=\frac{1}{\lambda} \log _{e}(1+\lambda a)$ for $\lambda>-1$

- $g(0)=\log _{e}(1)=0$
- strictly monotone increasing since $g^{\prime}(a)=\frac{1}{1+\lambda a}>0$ for $a \in[0,1]$
- inverse function on $[0,1]$ is $g^{-1}(a)=\frac{\exp (\lambda a)-1}{\lambda}$, thus

$$
\begin{aligned}
c(a) & =g^{-1}\left(\frac{\log (1+\lambda)}{\lambda}-\frac{\log (1+\lambda a)}{\lambda}\right) \\
& =\frac{\exp (\log (1+\lambda)-\log (1+\lambda a))-1}{\lambda} \\
& =\frac{1}{\lambda}\left(\frac{1+\lambda}{1+\lambda a}-1\right)=\frac{1-a}{1+\lambda a} \quad \text { (Sugeno Complement) }
\end{aligned}
$$

Fuzzy Complement: $2^{\text {nd }}$ Characterization

Lecture 02

Theorem

c: $[0,1] \rightarrow[0,1]$ is involutive fuzzy complement iff \exists continuous function $\mathrm{f}:[0,1] \rightarrow \mathbb{R}$ with

- $f(1)=0$
- strictly monotone decreasing
- $\forall \mathrm{a} \in[0,1]: \mathrm{c}(\mathrm{a})=\mathrm{f}^{(-1)}(\mathrm{f}(0)-\mathrm{f}(\mathrm{a}))$.
- $\int f^{-1}(x)$ pseudo-inverse
defines a
decreasing generator

Examples

a) $\mathrm{f}(\mathrm{x})=k-k \cdot \mathrm{x}(k>0) \quad \mathrm{f}(-1)(\mathrm{x})=1-\mathrm{x} / k \quad \mathrm{c}(\mathrm{a})=1-\frac{k-(k-k a)}{k}=1-a$
b) $f(x)=1-x^{w} \quad f^{-1}(x)=(1-x)^{1 / w} \quad c(a)=f^{-1}\left(a^{w}\right)=\left(1-a^{w}\right)^{1 / w} \quad$ (Yager)
technische universität
dortmund \quad G. Rudolph: Computational Intelligence • Winter Term 2019/20

Fuzzy Intersection: t-norm Lecture 02

Theorem:

The only idempotent t-norm is the standard fuzzy intersection.

Proof:

Assume there exists a t-norm with $t(a, a)=a$ for all $a \in[0,1]$.

- If $0 \leq a \leq b \leq 1$ then

$$
\begin{gathered}
\mathrm{a} \underset{\uparrow}{=} \mathrm{t}(\mathrm{a}, \mathrm{a}) \underset{\uparrow}{\uparrow} \mathrm{t}(\mathrm{a}, \mathrm{~b}) \underset{\uparrow}{\leq} \mathrm{t}(\mathrm{a}, \mathrm{l}) \underset{\uparrow}{=} \mathrm{a} \\
\text { by assumption by monotonicity } \\
\text { by boundary condition }
\end{gathered}
$$

$$
\text { and hence } t(a, b)=a \text {. }
$$

- If $0 \leq b \leq a \leq 1$ then
$t(a, b)=\min (a, b)$ is the only possible solution!

$$
\begin{gathered}
\qquad \mathrm{b}=\mathrm{t}(\mathrm{~b}, \mathrm{~b}) \underset{\uparrow}{\uparrow} \underset{\uparrow}{\mathrm{f}} \mathrm{t}(\mathrm{~b}, \mathrm{a}) \underset{\uparrow}{\mathrm{f}} \mathrm{t}(\mathrm{~b}, \mathrm{l}) \underset{\uparrow}{=} \mathrm{b} \\
\text { by assumption } \\
\text { by monotonicity } \\
\text { by boundary condition }
\end{gathered}
$$

and hence $t(a, b) \underset{\uparrow}{=} t(b, a)=b$.

Fuzzy Intersection: t-norm

Lecture 02

Definition

A function $t:[0,1] \times[0,1] \rightarrow[0,1]$ is a fuzzy intersection or \boldsymbol{t}-norm iff $\forall \mathrm{a}, \mathrm{b}, \mathrm{d} \in[0,1]$
(A1) $t(a, 1)=a$
(A2) $b \leq d \Rightarrow t(a, b) \leq t(a, d)$
(A3) $t(a, b)=t(b, a)$
(A4) $t(a, t(b, d))=t(t(a, b), d)$
(boundary condition)
(monotonicity)
(commutative)
(associative)

"nice to have"

(A5) $t(a, b)$ is continuous
(continuity)
$\begin{array}{ll}\text { (A6) } t(a, a)<a & \text { for } 0<a<1 \\ \text { (A7) } a_{1}<a_{2} \text { and } b_{1} \leq b_{2} \Rightarrow & t\left(a_{1}, b_{1}\right)<t\left(a_{2}, b_{2}\right)\end{array}$
(subidempotent)
(A7) $\mathrm{a}_{1}<\mathrm{a}_{2}$ and $\mathrm{b}_{1} \leq \mathrm{b}_{2} \Rightarrow \mathrm{t}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)<\mathrm{t}\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)$
(strict monotonicity)

Note: the only idempotent t-norm is the standard fuzzy intersection

U technische universität G. Rudolph: Computational Intelligence • Winter Term 2019/20

Fuzzy Intersection: t-norm Lecture 02

Examples:

Name	Function	(a)	(b)
(a) Standard	$t(a, b)=\min \{a, b\}$		
(b) Algebraic Product	$t(a, b)=a \cdot b$		
(c) Bounded Difference	$t(a, b)=\max \{0, a+b-1\}$		
(d) Drastic Product	$t(a, b)= \begin{cases}a & \text { if } b=1 \\ b & \text { if } a=1 \\ 0 & \text { otherwise }\end{cases}$		

Is algebraic product a t-norm? Check the 4 axioms!
$\operatorname{ad}(A 1): t(a, 1)=a \cdot 1=a$
$a d(A 3): t(a, b)=a \cdot b=b \cdot a=t(b$
$a d(A 2): a \cdot b \leq a \cdot d \Leftrightarrow b \leq d \quad \nabla \quad a d(A 4): a \cdot(b \cdot d)=(a \cdot b) \cdot d$ ∇

Fuzzy Intersection: Characterization

Lecture 02

Theorem

Function $\mathrm{t}:[0,1] \times[0,1] \rightarrow[0,1]$ is a t-norm ,
\exists decreasing generator $f:[0,1] \rightarrow \mathbb{R}$ with $t(a, b)=f^{-1}(\min \{f(0), f(a)+f(b)\})$.

Example:

$f(x)=1 / x-1$ is decreasing generator since

- $f(x)$ is continuous ∇
- $f(1)=1 / 1-1=0$ V
- $f^{\prime}(x)=-1 / x^{2}<0$ (monotone decreasing) ∇
inverse function is $f^{-1}(x)=\frac{1}{x+1} \quad ; \quad f(0)=\infty \Rightarrow \min \{f(0), f(a)+f(b)\}=f(a)+f(b)$
$\Rightarrow \mathrm{t}(\mathrm{a}, \mathrm{b})=f^{-1}\left(\frac{1}{a}+\frac{1}{b}-2\right)=\frac{1}{\frac{1}{a}+\frac{1}{b}-1}=\frac{a b}{a+b-a b}$
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2019/20
dortmund

Fuzzy Union: s-norm

Lecture 02

Examples:

Name	Function	(a)	(b)
Standard	$s(a, b)=\max \{\mathrm{a}, \mathrm{b}\}$		
Algebraic Sum	$s(a, b)=a+b-a \cdot b$		
Bounded Sum	$s(a, b)=\min \{1, a+b\}$		
Drastic Union	$s(a, b)= \begin{cases}a & \text { if } b=0 \\ b & \text { if } a=0 \\ 1 & \text { otherwise }\end{cases}$		
		(c)	(d)

Is algebraic sum a t-norm? Check the 4 axioms!
$\operatorname{ad}(\mathrm{A} 1): \mathrm{s}(\mathrm{a}, 0)=\mathrm{a}+0-\mathrm{a} \cdot 0=\mathrm{a} \quad \nabla$
ad (A3): \downarrow
$a d(A 2): a+b-a \cdot b \leq a+d-a \cdot d \Leftrightarrow b(1-a) \leq d(1-a) \Leftrightarrow b \leq d \quad \square \quad a d(A 4): \boxtimes$

Fuzzy Union: s-norm

Lecture 02

Definition

A function s:[0,1] $\times[0,1] \rightarrow[0,1]$ is a fuzzy union or s-norm iff $\forall \mathrm{a}, \mathrm{b}, \mathrm{d} \in[0,1]$
(A1) $s(a, 0)=a$
(boundary condition)
(A2) $b \leq d \Rightarrow s(a, b) \leq s(a, d)$
(A3) $s(a, b)=s(b, a)$
(A4) $s(a, s(b, d))=s(s(a, b), d)$ (monotonicity) (commutative) (associative)

"nice to have"

(A5) $s(a, b)$ is continuous		(continuity)
(A6) $s(a, a)>a$	for $0<a<1$	(superidempotent)
(A7) $a_{1}<a_{2}$ and $b_{1} \leq b_{2} \Rightarrow s\left(a_{1}, b_{1}\right)<s\left(a_{2}, b_{2}\right)$	(strict monotonicity)	

Note: the only idempotent s-norm is the standard fuzzy union

technische universität
 technische dortmund

G. Rudolph: Computational Intelligence • Winter Term 2019/20

Fuzzy Union: Characterization

Lecture 02

Theorem

Function s: $[0,1] \times[0,1] \rightarrow[0,1]$ is a s-norm \Leftrightarrow
ヨincreasing generator $g:[0,1] \rightarrow \mathbb{R}$ with $s(a, b)=g^{-1}(\min \{g(1), g(a)+g(b)\})$.

Example:

$g(x)=-\log (1-x)$ is increasing generator since

- $g(x)$ is continuous ∇
- $g(0)=-\log (1-0)=0$ \square
- $g^{\prime}(x)=1 /(1-x)>0($ monotone increasing) ∇
inverse function is $g^{-1}(x)=1-\exp (-x) ; g(1)=\infty \Rightarrow \min \{g(1), g(a)+g(b)\}=g(a)+g(b)$

$$
\begin{aligned}
\Rightarrow \mathrm{s}(\mathrm{a}, \mathrm{~b}) & =g^{-1}(-\log (1-a)-\log (1-b)) \\
& =1-\exp (\log (1-a)+\log (1-b)) \\
& =1-(1-a)(1-b)=a+b-a b \quad \text { (algebraic sum) }
\end{aligned}
$$

U technische universität
technische
dortmund
G. Rudolph: Computational Intelligence • Winter Term 2019/20
technische universität

[^0]Combination of Fuzzy Operations: Dual Triples

Lecture 02

Background from classical set theory:

\cap and \cup operations are dual w.r.t. complement since they obey DeMorgan's laws

Definition

A pair of t -norm $\mathrm{t}(\cdot, \cdot)$ and s-norm $\mathrm{s}(\cdot, \cdot)$ is said to be dual with regard to the fuzzy complement $\mathrm{c}(\cdot)$ iff

- $c(t(a, b))=s(c(a), c(b))$
- $c(s(a, b))=t(c(a), c(b))$
for all $a, b \in[0,1]$.

Examples of dual tripels

t-norm	s-norm	complement
$\min \{a, b\}$	$\max \{a, b\}$	$1-a$
$a \cdot b$	$a+b-a \cdot b$	$1-a$
$\max \{0, a+b-1\}$	$\min \{1, a+b\}$	$1-a$

Definition

Let (c, s, t) be a tripel of fuzzy complement $c(\cdot)$, s - and t -norm.
If t and s are dual to c then the tripel ($\mathrm{c}, \mathrm{s}, \mathrm{t}$) is called a dual tripel.

Dual Triples vs. Non-Dual Triples

Lecture 02

$c(t(a, b))$

	Non-Dual Triple:
- algebraic product	
	- bounded sum
	- standard complement
	\Rightarrow left image \neq right image

technische universität dortmund

Dual Triple:

- bounded difference
- bounded sum
- standard complement
\Rightarrow left image $=$ right image

Non-Dual Triple:

- algebraic product
- bounded sum
- standard complement
\Rightarrow left image \neq right image

Dual Triples vs. Non-Dual Triples

Lecture 02

Why are dual triples so important?

\Rightarrow allow equivalence transformations of fuzzy set expressions
\Rightarrow required to transform into some equivalent normal form (standardized input)
\Rightarrow e.g. two stages: intersection of unions

$$
\begin{aligned}
& \bigcap_{i=1}^{n}\left(A_{i} \cup B_{i}\right) \\
& \bigcup_{i=1}^{n}\left(A_{i} \cap B_{i}\right)
\end{aligned}
$$

Example:

$$
\begin{array}{l|l}
A \cup\left(B \cap(C \cap D)^{c}\right)= & \leftarrow \text { not in normal form } \\
A \cup\left(B \cap\left(C^{c} \cup D^{c}\right)\right)= & \leftarrow \text { equivalent if DeMorgan‘s law valid (dual triples!) } \\
A \cup\left(B \cap C^{c}\right) \cup\left(B \cap D^{c}\right) & \leftarrow \text { equivalent (distributive lattice!) }
\end{array}
$$

[^0]: G. Rudolph: Computational Intelligence • Winter Term 2019/2

