Computational Intelligence

Winter Term 2019/20

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

- Fuzzy relations
- Fuzzy logic
- Linguistic variables and terms
- Inference from fuzzy statements
relations with conventional sets $\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{n}$:

$$
R\left(\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{n}\right) \subseteq \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{n}
$$

notice that cartesian product is a set!
\Rightarrow all set operations remain valid!
crisp membership function (of x to relation R)

$$
R\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R \\ 0 & \text { otherwise }\end{cases}
$$

Fuzzy Relations

Definition

Fuzzy relation $=$ fuzzy set over crisp cartesian product $\mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{n}$
\rightarrow each tuple ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$) has a degree of membership to relation
\rightarrow degree of membership expresses strength of relationship between elements of tuple
appropriate representation: n-dimensional membership matrix
example: Let $\mathrm{X}=\{$ New York, Paris $\}$ and $\mathrm{Y}=\{$ Bejing, New York, Dortmund $\}$.
relation $\mathrm{R}=$ "very far away"
membership matrix \longrightarrow

relation R	New York	Paris
Bejing	1.0	0.9
New York	0.0	0.7
Dortmund	0.6	0.3

Fuzzy Relations

Definition

Let $R(X, Y)$ be a fuzzy relation with membership matrix R. The inverse fuzzy relation to $R(X, Y)$, denoted $R^{-1}(Y, X)$, is a relation on $Y \times X$ with membership matrix $R^{-1}=R^{\prime}$.

Remark: $\mathrm{R}^{\text {‘ }}$ is the transpose of membership matrix R .

Evidently: $\left(\mathrm{R}^{-1}\right)^{-1}=\mathrm{R} \quad$ since $\left(\mathrm{R}^{\prime}\right)^{\star}=\mathrm{R}$

Definition

Let $P(X, Y)$ and $Q(Y, Z)$ be fuzzy relations. The operation \circ on two relations, denoted $P(X, Y) \circ Q(Y, Z)$, is termed max-min-composition iff

$$
R(x, z)=(P \circ Q)(x, z)=\max _{y \in Y} \min \{P(x, y), Q(y, z)\}
$$

Fuzzy Relations

Theorem

a) max-min composition on relations is associative.
b) max-min composition on relations is not commutative.
c) $(P(X, Y) \circ Q(Y, Z))^{-1}=Q^{-1}(Z, Y) \circ P^{-1}(Y, X)$.
membership matrix of max-min composition determinable via "fuzzy matrix multiplication": $\mathrm{R}=\mathrm{P} \circ \mathrm{Q}$
fuzzy matrix multiplication

$$
r_{i j}=\max _{k} \min \left\{p_{i k}, q_{k j}\right\}
$$

crisp matrix multiplication

$$
r_{i j}=\sum_{k} p_{i k} \cdot q_{k j}
$$

Fuzzy Relations

further methods for realizing compositions of relations:
max-prod composition
$(P \odot Q)(x, z)=\max _{y \in \mathcal{Y}}\{P(x, y) \cdot Q(y, z)\}$
generalization: sup-t composition
$(P \circ Q)(x, z)=\sup _{y \in \mathcal{Y}}\{t(P(x, y), Q(y, z))\}$, where $\mathrm{t}(. .$.$) is a t-norm$
e.g.: $\quad t(a, b)=\min \{a, b\} \Rightarrow$ max-min-composition

$$
\mathrm{t}(\mathrm{a}, \mathrm{~b})=\mathrm{a} \cdot \mathrm{~b} \quad \Rightarrow \text { max-prod-composition }
$$

Fuzzy Relations

Binary fuzzy relations on $\mathrm{X} \times \mathrm{X}$: properties

- reflexive
- irreflexive
- antireflexive
- symmetric
- asymmetric
- antisymmetric
- transitive
- intransitive
- antitransitive

$$
\begin{aligned}
& \Leftrightarrow \forall x \in X: R(x, x)=1 \\
& \Leftrightarrow \exists x \in X: R(x, x)<1 \\
& \Leftrightarrow \forall x \in X: R(x, x)<1
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \forall(x, y) \in X x X: R(x, y)=R(y, x) \\
& \Leftrightarrow \exists(x, y) \in X x X: R(x, y) \neq R(y, x) \\
& \Leftrightarrow \forall(x, y) \in X x X: R(x, y) \neq R(y, x)
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \forall(x, z) \in X x X: R(x, z) \geq \max _{y \in Y} \min \{R(x, y), R(y, z)\} \\
& \Leftrightarrow \exists(x, z) \in X x X: R(x, z)<\max _{y \in Y} \min \{R(x, y), R(y, z)\} \\
& \Leftrightarrow \forall(x, z) \in X x X: R(x, z)<\max _{y \in Y} \min \{R(x, y), R(y, z)\}
\end{aligned}
$$

actually, here: max-min-transitivity (\rightarrow in general: sup-t-transitivity)

Fuzzy Relations

binary fuzzy relation on X x X: example

Let \mathbf{X} be the set of all cities in Germany.
Fuzzy relation R is intended to represent the concept of „very close to".

- $R(x, x)=1$, since every city is certainly very close to itself.
\Rightarrow reflexive
- $R(x, y)=R(y, x)$: if city x is very close to city y, then also vice versa.
\Rightarrow symmetric
- R(Dortmund, Essen) $=0.8$
$R($ Essen, Duisburg) $\quad=0.7$
R (Dortmund, Duisburg) $=0.5$
R (Dortmund, Hagen) $=0.9$

HA
\Rightarrow intransitive

Fuzzy Relations

crisp:

relation R is equivalence relation $\Leftrightarrow \mathrm{R}$ reflexive, symmetric, transitive

fuzzy:

relation R is similarity relation $\Leftrightarrow R$ reflexive, symmetric, (max-min-) transitive

Fuzzy Logic

linguistic variable:

variable that can attain several values of lingustic / verbal nature e.g.: color can attain values red, green, blue, yellow, ...
values (red, green, ...) of linguistic variable are called linguistic terms
linguistic terms are associated with fuzzy sets

Fuzzy Logic

fuzzy proposition

- LV may be associated with several LT : high, medium, low, ...
- high, medium, low temperature are fuzzy sets over numerical scale of crisp temperatures
- trueness of fuzzy proposition „temperature is high" for a given concrete crisp temperature value v is interpreted as equal to the degree of membership high(v) of the fuzzy set high

fuzzy proposition

actually:
$\mathrm{p}: V$ is $F(\mathrm{v})$
and
$T(p)=F(v)$ for a concrete crisp value v
trueness(p)

fuzzy proposition

p: IF heating is hot, THEN energy consumption is high

LV

LV

expresses relation between
a) temperature of heating and
b) quantity of energy consumption

fuzzy proposition

p : IF X is A, THEN Y is B

How can we determine / express degree of trueness $T(p)$?

- For crisp, given values x, y we know $A(x)$ and $B(y)$
- $A(x)$ and $B(y)$ must be processed to single value via relation R
- $R(x, y)=$ function $(A(x), B(y))$ is fuzzy set over $X x Y$
- as before: interprete $T(p)$ as degree of membership $R(x, y)$

fuzzy proposition

p : IF X is A, THEN Y is B
A is fuzzy set over X
B is fuzzy set over Y
R is fuzzy set over $X x Y$
$\forall(x, y) \in X x Y: \quad R(x, y)=\operatorname{Imp}(A(x), B(y))$

What is $\operatorname{Imp}(\cdot, \cdot)$?
\Rightarrow „appropriate" fuzzy implication $[0,1] \times[0,1] \rightarrow[0,1]$

Fuzzy Logic

assumption: we know an „appropriate" $\operatorname{Imp}(\mathrm{a}, \mathrm{b})$.
How can we determine the degree of trueness $\mathrm{T}(\mathrm{p})$?

example:

let $\operatorname{Imp}(a, b)=\min \{1,1-a+b\}$ and consider fuzzy sets

\Rightarrow| \mathbf{R} | x_{1} | x_{2} | x_{3} |
| :---: | :---: | :---: | :---: |
| y_{1} | 1.0 | 0.7 | 0.5 |
| y_{2} | 1.0 | 1.0 | 1.0 |

z.B.
$R\left(x_{2}, y_{1}\right)=\operatorname{Imp}\left(A\left(x_{2}\right), B\left(y_{1}\right)\right)=\operatorname{Imp}(0.8,0.5)=$ $\min \{1.0,0.7\}=0.7$
and $T(p)$ for $\left(x_{2}, y_{1}\right)$ is $R\left(x_{2}, y_{1}\right)=0.7$

Fuzzy Logic

toward inference from fuzzy statements:

- let $\forall x, y: y=f(x)$.

IF $X=x_{0}$ THEN $Y=f\left(x_{0}\right)$

- IF $X \in A$ THEN $Y \in B=\{y \in \mathcal{Y}: y=f(x), x \in A\}$
crisp case:
functional relationship

Fuzzy Logic

toward inference from fuzzy statements:

- let relationship between x and y be a relation R on $\mathcal{X} \times \mathcal{Y}$

IF $X=x_{0}$ THEN $Y \in B=\left\{y \in \mathcal{Y}:\left(x_{0}, y\right) \in R\right\}$

- IF $X \in A$ THEN $Y \in B=\{y \in \mathcal{Y}:(x, y) \in R, x \in A\}$

$$
\begin{aligned}
& \text { crisp case: } \\
& \text { relational } \\
& \text { relationship }
\end{aligned}
$$

Fuzzy Logic

toward inference from fuzzy statements:

IF $X \in A$ THEN $Y \in B=\{y \in \mathcal{Y}:(x, y) \in R, x \in A\}$
also expressible via characteristic functions of sets A, B, R :

$$
\begin{aligned}
B(y)=1 & \text { iff } \exists x: A(x)=1 \text { and } R(x, y)=1 \\
& \Leftrightarrow \exists x: \min \{A(x), R(x, y)\}=1 \\
& \Leftrightarrow \max _{x \in \mathcal{X}} \min \{A(x), R(x, y)\}=1
\end{aligned}
$$

$\forall y \in \mathcal{Y}: B(y)=\max _{x \in \mathcal{X}} \min \{A(x), R(x, y)\}$

Fuzzy Logic

inference from fuzzy statements

Now: A', B' fuzzy sets over \mathcal{X} resp. \mathcal{Y}
Assume: $R(x, y)$ and $A^{\prime}(x)$ are given.
Idea: Generalize characteristic function of $\mathrm{B}(\mathrm{y})$ to membership function $\mathrm{B}^{\mathrm{C}}(\mathrm{y})$
$\forall \mathrm{y} \in \mathcal{Y}: \mathrm{B}(\mathrm{y})=\max _{\mathrm{x} \in \mathcal{X}} \min \{\mathrm{A}(\mathrm{x}), \mathrm{R}(\mathrm{x}, \mathrm{y})\} \quad$ characteristic functions

$\forall y \in \mathcal{Y}: B^{\prime}(y)=\sup _{x \in \mathcal{X}} \min \left\{A^{\prime}(x), R(x, y)\right\} \quad$ membership functions
composition rule of inference (in matrix form): $\mathbf{B}^{\boldsymbol{\top}}=\mathbf{A} \circ \mathbf{R}$

Fuzzy Logic

inference from fuzzy statements

- conventional: modus ponens
$\mathrm{a} \Rightarrow \mathrm{b}$
a
b
- fuzzy:
generalized modus ponens (GMP)

IF X is A, THEN Y is B
X is A^{\prime}
Y is B^{\prime}
e.g.: IF heating is hot, THEN energy consumption is high heating is warm
energy consumption is normal

Fuzzy Logic

example: GMP

consider

$A:$| x_{1} | x_{2} | x_{3} |
| :---: | :---: | :---: |
| 0.5 | 1.0 | 0.6 |

B: | y_{1} | y_{2} |
| :---: | :---: |
| 1.0 | 0.4 |

with the rule: IF X is A THEN Y is B
given fact

$A^{\prime}:$| x_{1} | x_{2} | x_{3} |
| :---: | :---: | :---: |
| 0.6 | 0.9 | 0.7 |

with $\operatorname{Imp}(a, b)=\min \{1,1-a+b\}$

\Rightarrow| \mathbf{R} | x_{1} | x_{2} | x_{3} |
| :---: | :---: | :---: | :---: |
| y_{1} | 1.0 | 1.0 | 1.0 |
| y_{2} | 0.9 | 0.4 | 0.8 |

thus: $A^{\prime} \circ R=B^{\prime}$
with max-min-composition

$$
\left(\begin{array}{lll}
0.6 & 0.9 & 0.7
\end{array}\right) \circ\left(\begin{array}{ll}
1.0 & 0.9 \\
1.0 & 0.4 \\
1.0 & 0.8
\end{array}\right)=\left(\begin{array}{ll}
0.9 & 0.7
\end{array}\right)
$$

Fuzzy Logic

inference from fuzzy statements

- conventional: modus tollens

$$
\frac{\frac{\mathrm{a}}{\mathrm{~b}} \Rightarrow \mathrm{~b}}{\overline{\mathrm{a}}}
$$

- fuzzy:
generalized modus tollens (GMT)
IF X is A, THEN Y is B
Y is B^{\prime}
X is A^{\prime}
e.g.: IF heating is hot, THEN energy consumption is high energy consumption is normal
heating is warm

Fuzzy Logic

example: GMT

consider

B: | y_{1} | y_{2} |
| :---: | :---: |
| 1.0 | 0.4 |

with the rule: IF X is A THEN Y is B
given fact

B': | y_{1} | y_{2} |
| :---: | :---: |
| 0.9 | 0.7 |

with $\operatorname{Imp}(a, b)=\min \{1,1-a+b\}$

\Rightarrow| \mathbf{R} | x_{1} | x_{2} | x_{3} |
| :---: | :---: | :---: | :---: |
| y_{1} | 1.0 | 1.0 | 1.0 |
| y_{2} | 0.9 | 0.4 | 0.8 |

thus: $\mathrm{B}^{\prime} \circ \mathrm{R}^{-1}=\mathrm{A}^{\wedge} \quad\left(\begin{array}{ll}0.9 & 0.7\end{array}\right) \circ\left(\begin{array}{lll}1.0 & 1.0 & 1.0 \\ 0.9 & 0.4 & 0.8\end{array}\right)=\left(\begin{array}{lll}0.9 & 0.9 & 0.9\end{array}\right)$
with max-min-composition

Fuzzy Logic

inference from fuzzy statements

- conventional:
hypothetic syllogism
$a \Rightarrow b$
$b \Rightarrow c$
$a \Rightarrow c$
- fuzzy:
generalized HS
IF X is A, THEN Y is B
IF Y is B, THEN Z is C
IF X is A, THEN Z is C
e.g.: IF heating is hot, THEN energy consumption is high IF energy consumption is high, THEN living is expensive
IF heating is hot, THEN living is expensive

Fuzzy Logic

example: GHS

let fuzzy sets $A(x), B(x), C(x)$ be given
\Rightarrow determine the three relations

$$
\begin{aligned}
& R_{1}(x, y)=\operatorname{Imp}(A(x), B(y)) \\
& R_{2}(y, z)=\operatorname{Imp}(B(y), C(z)) \\
& R_{3}(x, z)=\operatorname{Imp}(A(x), C(z))
\end{aligned}
$$

and express them as matrices $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$

We say:

GHS is valid if $R_{1} \circ R_{2}=R_{3}$

Fuzzy Logic

So, ... what makes sense for Imp($\cdot, \cdot)$?
$\operatorname{Imp}(a, b)$ ought to express fuzzy version of implication $(a \Rightarrow b)$
conventional: $\mathrm{a} \Rightarrow \mathrm{b}$ identical to $\overline{\mathrm{a}} \vee \mathrm{b}$

But how can we calculate with fuzzy "boolean" expressions?
request: must be compatible to crisp version (and more) for $a, b \in\{0,1\}$

a	b	$\mathrm{a} \wedge \mathrm{b}$	$\mathrm{t}(\mathrm{a}, \mathrm{b})$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

a	b	$\mathrm{a} \vee \mathrm{b}$	$\mathrm{s}(\mathrm{a}, \mathrm{b})$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

a	$\overline{\mathrm{a}}$	$\mathrm{c}(\mathrm{a})$
0	1	1
1	0	0

Fuzzy Logic

So, ... what makes sense for Imp($\cdot, \cdot)$?
1st approach: S implications
conventional: $\mathrm{a} \Rightarrow \mathrm{b}$ identical to $\overline{\mathrm{a}} \vee \mathrm{b}$
fuzzy: $\quad \operatorname{Imp}(a, b)=s(c(a), b)$

2nd approach: R implications

conventional: $\mathrm{a} \Rightarrow \mathrm{b}$ identical to $\max \{\mathrm{x} \in\{\mathbf{0 , 1 \}} \mathrm{a} \mathrm{a} \wedge \mathrm{x} \leq \mathrm{b}\}$
fuzzy:

$$
\operatorname{Imp}(a, b)=\max \{x \in[0,1]: t(a, x) \leq b\}
$$

3rd approach: QL implications
conventional: $\mathrm{a} \Rightarrow \mathrm{b}$ identical to $\overline{\mathrm{a}} \vee \mathrm{b} \equiv \overline{\mathrm{a}} \vee(\mathrm{a} \wedge \mathrm{b}) \quad$ law of absorption
fuzzy:

$$
\operatorname{Imp}(a, b)=s(c(a), t(a, b))
$$

(dual tripel ?)

example: S implication

$$
\operatorname{Imp}(a, b)=s\left(c_{s}(a), b\right) \quad\left(c_{s}: \text { std. complement }\right)
$$

1. Kleene-Dienes implication

$$
s(a, b)=\max \{a, b\} \quad(\text { standard }) \quad \operatorname{Imp}(a, b)=\max \{1-a, b\}
$$

2. Reichenbach implication

$$
s(a, b)=a+b-a b \quad \text { (algebraic sum) } \quad \operatorname{lmp}(a, b)=1-a+a b
$$

3. Łukasiewicz implication

$$
s(a, b)=\min \{1, a+b\} \quad(\text { bounded sum }) \quad \operatorname{Imp}(a, b)=\min \{1,1-a+b\}
$$

example: \mathbf{R} implicationen

$$
\operatorname{Imp}(a, b)=\max \{x \in[0,1]: t(a, x) \leq b\}
$$

1. Gödel implication $t(a, b)=\min \{a, b\}$

$$
\operatorname{Imp}(\mathrm{a}, \mathrm{~b})= \begin{cases}1, & \text { if } a \leq b \tag{std.}\\ b, & \text { else }\end{cases}
$$

2. Goguen implication $t(a, b)=a b$
(algeb. product) $\operatorname{Imp}(\mathrm{a}, \mathrm{b})= \begin{cases}1, & \text { if } a \leq b \\ \frac{b}{a}, & \text { else }\end{cases}$
3. Łukasiewicz implication $\mathrm{t}(\mathrm{a}, \mathrm{b})=\max \{0, \mathrm{a}+\mathrm{b}-1\} \quad$ (bounded diff.) $\quad \operatorname{Imp}(\mathrm{a}, \mathrm{b})=\min \{1,1-\mathrm{a}+\mathrm{b}\}$
example: QL implication $\operatorname{Imp}(a, b)=s(c(a), t(a, b))$
4. Zadeh implication

$$
\begin{array}{lll}
t(a, b)=\min \{a, b\} \\
s(a, b)=\max \{a, b\} & (s t d .) & (\operatorname{std} .) \tag{std.}
\end{array} \quad .
$$

2. „NN" implication © (Klir/Yuan 1994)

$$
\begin{array}{lll}
\mathrm{t}(\mathrm{a}, \mathrm{~b})=\mathrm{ab} & \text { (algebr. prd.) } & \operatorname{Imp}(\mathrm{a}, \mathrm{~b})=1-\mathrm{a}+\mathrm{a}^{2} \mathrm{~b} \\
\mathrm{~s}(\mathrm{a}, \mathrm{~b})=\mathrm{a}+\mathrm{b}-\mathrm{ab} & \text { (algebr. sum) }
\end{array}
$$

3. Kleene-Dienes implication

$$
\begin{array}{ll}
\mathrm{t}(\mathrm{a}, \mathrm{~b})=\max \{0, \mathrm{a}+\mathrm{b}-1\} & \text { (bounded diff.) } \\
\mathrm{s}(\mathrm{a}, \mathrm{~b})=\min \{1, \mathrm{a}+\mathrm{b}) & \text { (bounded sum) }(\mathrm{a}, \mathrm{~b})=\max \{1-\mathrm{a}, \mathrm{~b}\} \\
\hline
\end{array}
$$

Fuzzy Logic

Lecture 04

axioms for fuzzy implications

1. $\mathrm{a} \leq \mathrm{b}$ implies $\operatorname{Imp}(\mathrm{a}, \mathrm{x}) \geq \operatorname{Imp}(\mathrm{b}, \mathrm{x})$
2. $a \leq b$ implies $\operatorname{Imp}(x, a) \leq \operatorname{Imp}(x, b)$
3. $\operatorname{Imp}(0, a)=1$
4. $\operatorname{lmp}(1, b)=b$
5. $\operatorname{Imp}(a, a)=1$
6. $\operatorname{Imp}(a, \operatorname{Imp}(b, x))=\operatorname{Imp}(b, \operatorname{Imp}(a, x))$
7. $\operatorname{Imp}(a, b)=1$ iff $a \leq b$
8. $\operatorname{Imp}(a, b)=\operatorname{Imp}(c(b), c(a))$
9. $\operatorname{Imp}(\cdot, \cdot)$ is continuous
monotone in 1st argument
monotone in 2 nd argument dominance of falseness
neutrality of trueness
identity
exchange property
boundary condition
contraposition
continuity

Fuzzy Logic

Caution!

Not all S-, R-, QL- implications obey all axioms for fuzzy implications!

Implication	Valid Axioms
Kleene-Dienes	$1234-6-89$
Reichenbach	$1234-6-89$
Łukasiewicz	123456789
Gödel	$1234567-$
Goguen	$1234567-9$
Zadeh	$1234----9$
Klir-Yuan	- $234----9$

Fuzzy Logic

Lecture 04

characterization of fuzzy implication

Theorem:

Imp: $[0,1] \times[0,1] \rightarrow[0,1]$ satisfies axioms 1 - 9 for fuzzy implications for a certain fuzzy complement $c(\cdot) \Leftrightarrow$
\exists strictly monotone increasing, continuous function $\mathrm{f}:[0,1] \rightarrow[0, \infty)$ with

- $f(0)=0$
- $\forall a, b \in[0,1]: \operatorname{lmp}(a, b)=f^{-1}(\min \{f(1)-f(a)+f(b), f(1)\})$
- $\forall a \in[0,1]: c(a)=f^{-1}(f(1)-f(a))$

Proof: Smets \& Magrez (1987), p. 337f.
examples: (in tutorial)

Fuzzy Logic

choosing an „appropriate" fuzzy implication ...
apt quotation: (Klir \& Yuan 1995, p. 312)
„To select an appropriate fuzzy implication for approximate reasoning under each particular situation is a difficult problem."

guideline:

GMP, GMT, GHS should be compatible with MP, MT, HS
for fuzzy implication in calculations with relations:
$B(y)=\sup \{t(A(x), \operatorname{lmp}(A(x), B(y))): x \in X\}$
example:
Gödel implication for t-norm = bounded difference

