technische universität dortmund		Plan for Today	Lecture 05
Computational Intelligen Winter Term 2019/20	ce	 Approximate Reasoning Fuzzy Control	
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund		technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2019/20 2
Approximative Reasoning	Lecture 05	Approximative Reasoning	Lecture 05
So far: • p: IF X is A THEN Y is B $\rightarrow R(x, y) = Imp(A(x), B(y))$ • rule: IF X is A THEN Y is B fact: X is A' conclusion: Y is B' $\rightarrow B'(y) = sup_{x \in X} t(A'(x), R(x, y))$	rule as relation; fuzzy implication composition rule of inference	here: $A^{\prime}(x) = \begin{cases} 1 \text{ for } x = x_{0} \\ 0 \text{ otherwise} \end{cases}$ $B^{\prime}(y) = \sup_{x \in X} t(A^{\prime}(x), \operatorname{Imp}(A))$ $= \begin{cases} \sup_{x \neq x_{0}} t(0, \operatorname{Imp}(A)), B \\ 0 \text{ for } x \in x_{0} \end{cases}$	
Thus: ● B'(y) = sup _{x∈X} t(A'(x), Imp(A(x), B(y))) Lechnische universität	given : fuzzy rule input : fuzzy set A' output : fuzzy set B' Rudolph: Computational Intelligence • Winter Term 2019/20	= { 0 Imp(A(x ₀), B(y))	for $x \neq x_0$ since $t(0, a) = 0$ for $x = x_0$ since $t(a, 1) = a$ G. Rudolph: Computational Intelligence • Winter Term 2019/20
U dortmund	3	dortmund	4

Approximative Reasoning	Lecture 05	Approximative Reasoning	Lecture 05
Lemma:		Multiple rules:	
a) t(a, 1) = a		IF X is A ₁ , THEN Y is B ₁	$\rightarrow R_1(x, y) = Imp_1(A_1(x), B_1(y))$
b) t(a, b) ≤ min { a, b }		IF X is A ₂ , THEN Y is B ₂	$\rightarrow R_2(x, y) = Imp_2(A_2(x), B_2(y))$
c) $t(0, a) = 0$		IF X is A ₃ , THEN Y is B ₃	$\rightarrow R_3(x,y) = Imp_3(A_3(x),B_3(y)\)$
Proof:	by a)	IF X is A _n , THEN Y is B _n X is A'	$\rightarrow R_{n}(x,y) = Imp_{n}(A_{n}(x),B_{n}(y)\;)$
ad a) Identical to axiom 1 of t-norms.		Y is B'	
ad b) From monotonicity (axiom 2) follows for Commutativity (axiom 3) and monotonic $t(a, b) = t(b, a) \le t(b, 1) = b$. Thus, $t(a, b)$	ity lead in case of $a \le 1$ to	Multiple rules for <u>crisp input</u> : x_0 i	is given
equal to a as well as b, which in turn imp		$B_{1}(y) = Imp_{1}(A_{1}(x_{0}), B_{1}(y))$	aggregation of rules or
ad c) From b) follows $0 \le t(0, a) \le min \{0, a\}$		$B_{n}(y) = Imp_{n}(A_{n}(x_{0}), B_{n}(y))$	local inferences necessary!
		aggregate! \Rightarrow B'(y) = aggr{ B ₁ '(y),	, $B_n'(y)$ }, where $aggr = \begin{cases} min \\ max \end{cases}$
G. dortmund	Rudolph: Computational Intelligence • Winter Term 2019/20 5	technische universität	G. Rudolph: Computational Intelligence • Winter Term 2019/20 6
		Gordinana	
Approximative Reasoning	Lecture 05	Approximative Reasoning	Lecture 05
FITA: "First inference, then aggregate!"		1. Which principle is better? FITA	or FATI?
 Each rule of the form IF X is A_k THEN Y is I an appropriate fuzzy implication Imp_k(•,•) to R_k(x, y) = Imp_k(A_k(x), B_k(y)). 		2. Equivalence of FITA and FATI ?	
2. Determine $B_k^{(x)}(y) = R_k(x, y) \circ A^{(x)}(x)$ for all $k =$	1,, n (local inference).	FITA: $B'(y) = \beta(B_1'(y),, B_n)$	n'(y))
3. Aggregate to $B'(y) = \beta(B_1'(y),, B_n'(y))$.		$= \beta(R_1(x, y) \circ A')$	(x), …, R _n (x, y) ∘ A'(x))
		FATI: B'(y) = R(x, y) ∘ A'(x)	
FATI: "First aggregate, then inference!"		$= \alpha(R_1(x, y),, x_{n-1})$	$R_n(x, y)) \circ A'(x)$
1. Each rule of the form IF X ist A_k THEN Y ist an appropriate fuzzy implication $Imp_k(\cdot, \cdot)$ to $R_k(x, y) = Imp_k(A_k(x), B_k(y)).$			
2. Aggregate $R_1,, R_n$ to a superrelation with $R(x, y) = \alpha(R_1(x, y),, R_n(x, y))$.	th aggregating function α(·):		
3. Determine $B'(y) = R(x, y) \circ A'(x)$ w.r.t. super	relation (inference).		
technische universität G. dortmund	Rudolph: Computational Intelligence • Winter Term 2019/20 7	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2019/20 8

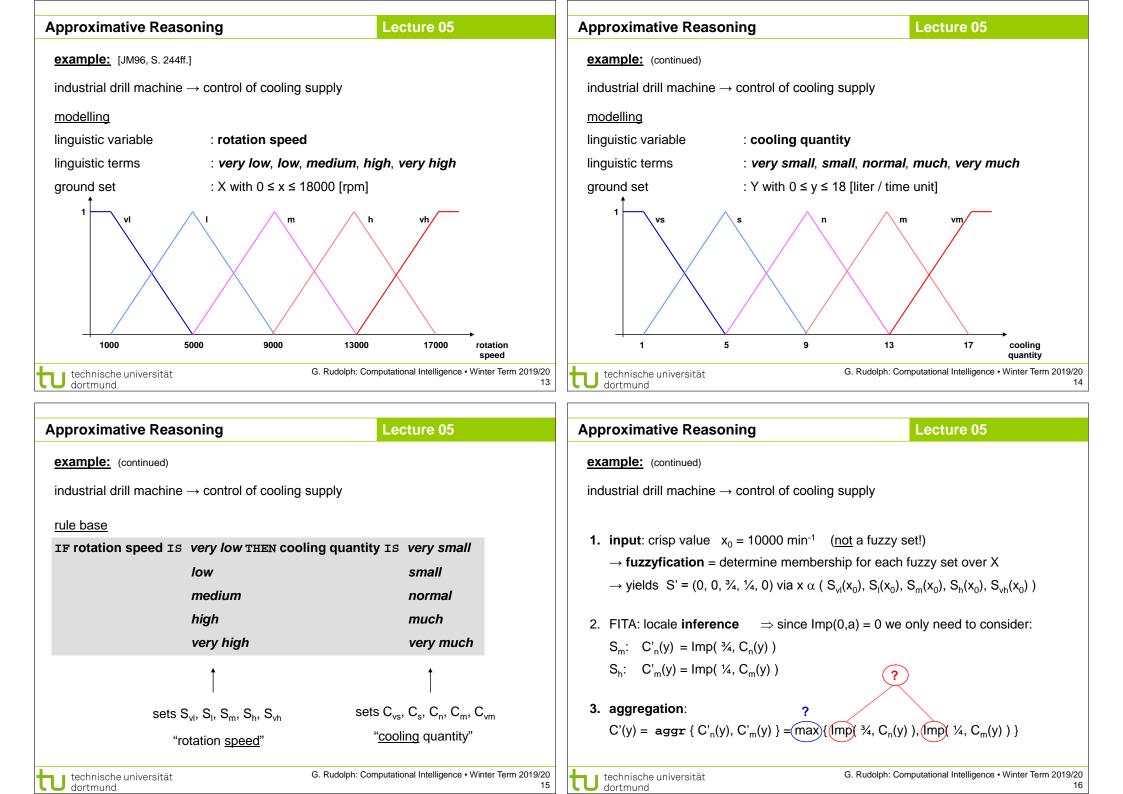
Approximative Reasoning	Lecture 05	Approximative Reasoning	Lecture 05
special case: $A'(x) = \begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$	crisp input!	• AND-connected premises IF $X_1 = A_{11}$ AND $X_2 = A_{12}$ AND AND $X_m = A_{1m}$	
On the equivalence of FITA and FATI:		IF $X_n = A_{n1}$ AND $X_2 = A_{n2}$ AND AND $X_m = A_{nm}$ reduce to single premise for each rule k:	ΓΗΕΝ Υ = Β _n
FITA: $B'(y) = \beta(B_1'(y),, B_n'(y))$ = $\beta(Imp_1(A_1(x_0), B_1(y)),,$, Imp _n (A _n (x ₀), B _n (y)))	$A_{k}(x_{1},,x_{m}) = \min \{ A_{k1}(x_{1}), A_{k2}(x_{2}),, A_{km}(x_{m}) \}$	or in general: t-norm
FATI: $B'(y) = R(x, y) \circ A'(x)$		OR-connected premises	
= $\sup_{x \in X} t(A'(x), R(x, y))$ = $R(x_0, y)$ = $\alpha(Imp_1(A_1(x_0), B_1(y)),$	(from now: special case) ., Imp _n (A _n (x ₀), B _n (y)))	IF $X_1 = A_{11}$ OR $X_2 = A_{12}$ OR OR $X_m = A_{1m}$ THE IF $X_n = A_{n1}$ OR $X_2 = A_{n2}$ OR OR $X_m = A_{nm}$ THE reduce to single premise for each rule k:	
evidently: sup-t-composition with arbitrary t-n	orm and $\alpha(\cdot) = \beta(\cdot)$	$A_{k}(x_{1},,x_{m}) = \max \{ A_{k1}(x_{1}), A_{k2}(x_{2}),, A_{km}(x_{m}) \}$	or in general: s-norm
U technische universität G. F	Rudolph: Computational Intelligence • Winter Term 2019/20 9	technische universität G. Rudolpl	n: Computational Intelligence • Winter Term 201

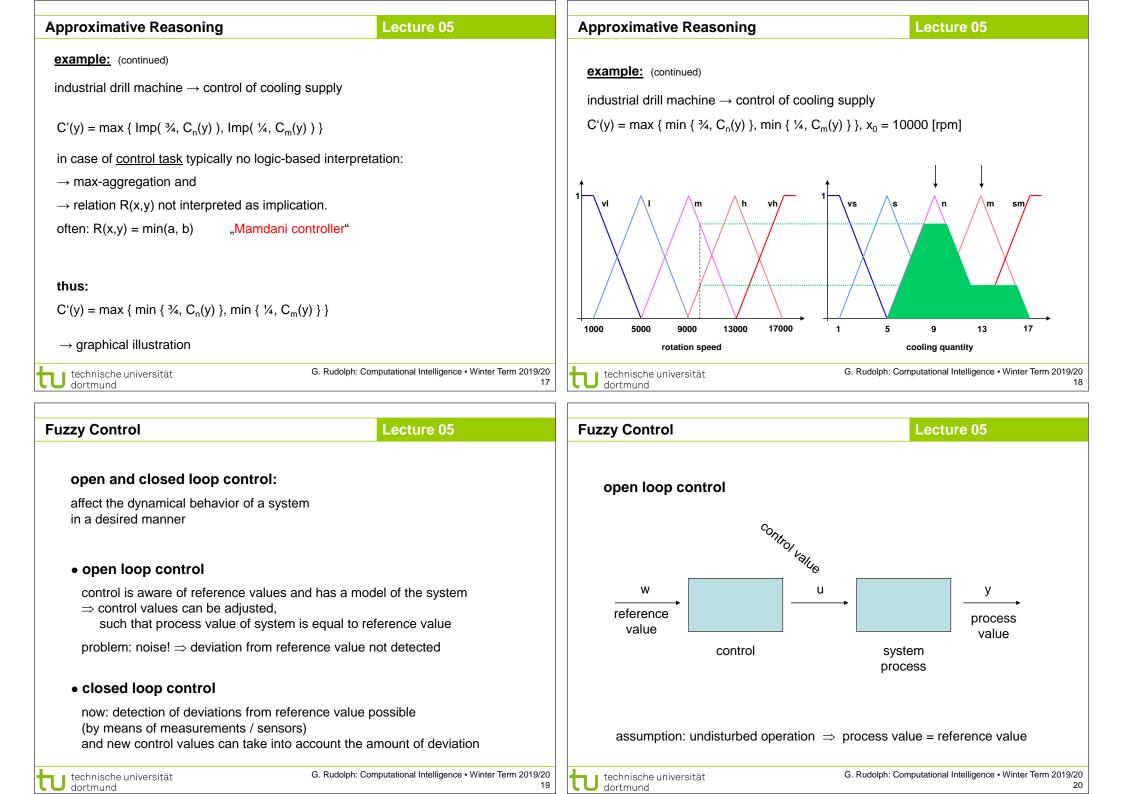
Lecture 05 Lecture 05 **Approximative Reasoning** Approximative Reasoning important: important: • if rules of the form IF X is A THEN Y is B interpreted as logical implication • if rules of the form IF X is A THEN Y is B are not interpreted as logical implications, then the function $Fct(\cdot)$ in \Rightarrow R(x, y) = Imp(A(x), B(y)) makes sense R(x, y) = Fct(A(x), B(y))• we obtain: $B'(y) = \sup_{x \in X} t(A'(x), R(x, y))$ can be chosen as required for desired interpretation. \Rightarrow the worse the match of premise A'(x), the larger is the fuzzy set B'(y) • frequent choice (especially in fuzzy control): \Rightarrow follows immediately from axiom 1: a \leq b implies Imp(a, z) \geq Imp(b, z) $- R(x, y) = min \{ A(x), B(x) \}$ Mamdani - "implication" $-R(x, y) = A(x) \cdot B(x)$ Larsen - "implication" interpretation of output set B'(y): \Rightarrow of course, they are no implications but specific t-norms! • B'(y) is the set of values that are still possible \Rightarrow thus, if relation R(x, y) is given, • each rule leads to an additional restriction of the values that are still possible then the composition rule of inference \Rightarrow resulting fuzzy sets Bⁱ_k(y) obtained from single rules must be mutually intersected! $B'(y) = A'(x) \circ R(x, y) = \sup_{x \in X} \min \{A'(x), R(x, y)\}$ \Rightarrow aggregation via B'(y) = min { B₁'(y), ..., B_n'(y) } still can lead to a conclusion via fuzzy logic. G. Rudolph: Computational Intelligence • Winter Term 2019/20 technische universität technische universität

11

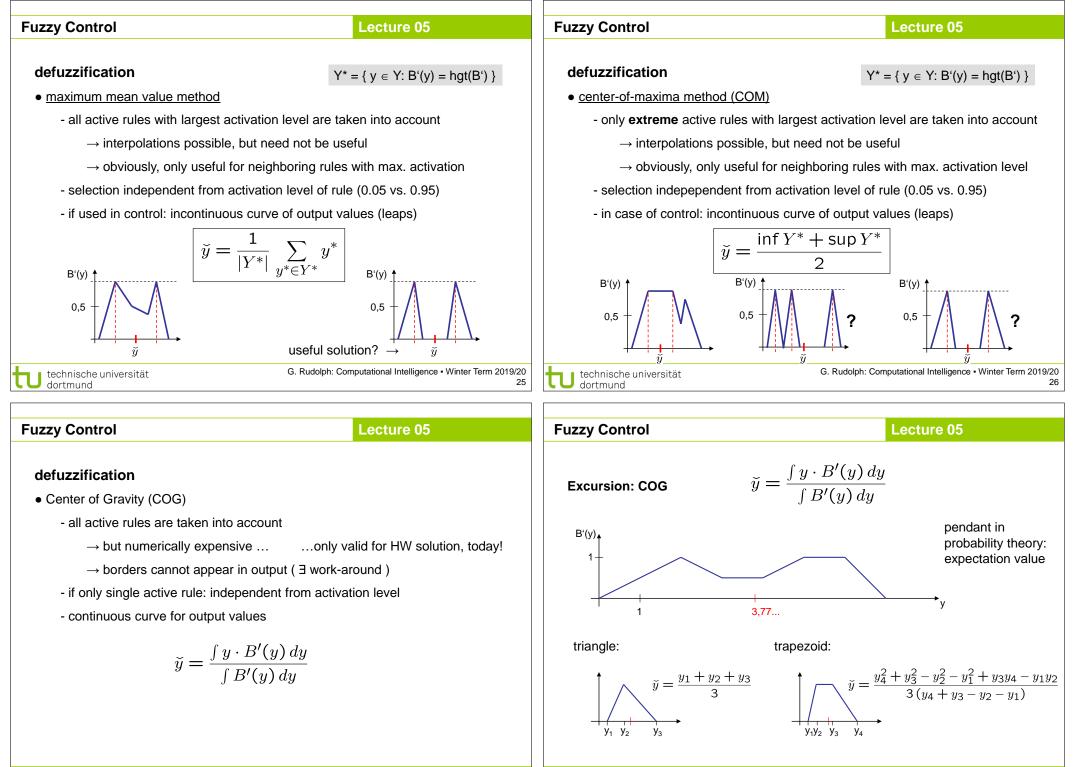
dortmund

dortmund





Fuzzy Control	Lecture 05	Fuzzy Control	Lecture 05
closed loop control ^{Co} nt _{ro}	noise	required: model of system / process → as differential equations or differ → well developed theory available	
w reference value control	u y process value		
control deviation = 1	reference value – process value G. Rudolph: Computational Intelligence • Winter Term 2019/20 21		G. Rudolph: Computational Intelligence • Winter Term 2019
fuzzy description of control be	havior	defuzzification	
IF X is A_1 , THEN Y is B_1 IF X is A_2 , THEN Y is B_2 IF X is A_3 , THEN Y is B_3		• maximum method	Def : rule k active $\Leftrightarrow A_k(x_0) > 0$
IF X is A _n , THEN Y is B _n X is A' Y is B'	similar to approximative reasoning	\rightarrow suitable for pattern reconduction of the suitable for pattern reconduction for a single alternative decision for a single decision for a si	ctivation level is taken into account gnition / classification ernative among finitely many alternatives ctivation level of rule (0.05 vs. 0.95)
X is A'	a crisp input	→ suitable for pattern recon → decision for a single alternet - selection independent from ac - if used for control: incontinuou	gnition / classification ernative among finitely many alternatives
X is A' Y is B' but fact A' is not a fuzzy set but a	a crisp input ess value	→ suitable for pattern reconnection for a single alternation of the selection independent from a control: incontinuous $\breve{y} = a$ B'(y) \breve{y} B'(y) \breve{y} B'(y) \breve{y}	gnition / classification ernative among finitely many alternatives stivation level of rule (0.05 vs. 0.95) as curve of output values (leaps) argmax B'(y) B'(y)
X is A' Y is B' but fact A' is not a fuzzy set but a \rightarrow actually, it is the current proce fuzzy controller executes inferen	a crisp input ess value nce step for the process / system	→ suitable for pattern recon- → decision for a single alternet - selection independent from acc - if used for control: incontinuou	gnition / classification ernative among finitely many alternatives ctivation level of rule (0.05 vs. 0.95) is curve of output values (leaps) argmax B'(y)



technische universität

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2019/20 28

