

Computational Intelligence

Winter Term 2019/20

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Plan for Today

Lecture 05

- Approximate Reasoning
- Fuzzy Control

So far:

• p: IF X is A THEN Y is B

$$\rightarrow$$
 R(x, y) = Imp(A(x), B(y))

rule as relation; fuzzy implication

• rule: IF X is A THEN Y is B

fact: $X ext{ is } A^c$

conclusion: Y is B'

$$\rightarrow$$
 B'(y) = sup_{x \in X} t(A'(x), R(x, y))

composition rule of inference

Thus:

• $B'(y) = \sup_{x \in X} t(A'(x), Imp(A(x), B(y))$

given : fuzzy rule

input : fuzzy set A'

output : fuzzy set B'

A'(x) =
$$\begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$$

crisp input!

$$B'(y) = \sup_{x \in X} t(A'(x), Imp(A(x), B(y)))$$

$$= \begin{cases} \sup_{x \neq x_0} t(0, Imp(A(x), B(y))) & \text{for } x \neq x_0 \\ t(1, Imp(A(x_0), B(y))) & \text{for } x = x_0 \end{cases}$$

$$\mathbf{C} = \mathbf{C} + \mathbf{C} +$$

$$= \begin{cases} 0 & \text{for } x \neq x_0 & \text{since } t(0, a) = 0 \\ \\ \text{Imp}(A(x_0), B(y)) & \text{for } x = x_0 & \text{since } t(a, 1) = a \end{cases}$$

by a)

Lemma:

- a) t(a, 1) = a
- b) $t(a, b) \leq min \{a, b\}$
- c) t(0, a) = 0

Proof:

ad a) Identical to axiom 1 of t-norms.

- ad b) From monotonicity (axiom 2) follows for $b \le 1$, that $t(a, b) \le t(a, 1) = a$. Commutativity (axiom 3) and monotonicity lead in case of $a \le 1$ to $t(a, b) = t(b, a) \le t(b, 1) = b$. Thus, t(a, b) is less than or equal to a as well as b, which in turn implies $t(a, b) \le min\{a, b\}$.
- ad c) From b) follows $0 \le t(0, a) \le \min \{0, a\} = 0$ and therefore t(0, a) = 0.

Multiple rules:

IF X is A₁, THEN Y is B₁ IF X is A₂, THEN Y is B₂ IF X is A₃, THEN Y is B₃

IF X is A_n, THEN Y is B_n X is A'

Y is B'

$$\rightarrow R_1(x, y) = Imp_1(A_1(x), B_1(y))$$

$$\rightarrow R_2(x, y) = Imp_2(A_2(x), B_2(y))$$

$$\rightarrow R_3(x, y) = Imp_3(A_3(x), B_3(y))$$

$$\rightarrow R_n(x, y) = Imp_n(A_n(x), B_n(y))$$

Multiple rules for <u>crisp input</u>: x₀ is given

$$B_1'(y) = Imp_1(A_1(x_0), B_1(y))$$
...
 $B_n'(y) = Imp_n(A_n(x_0), B_n(y))$

$$B_n'(y) = Imp_n(A_n(x_0), B_n(y))$$

aggregation of rules or local inferences necessary!

aggregate!
$$\Rightarrow$$
 B'(y) = aggr{ B₁'(y), ..., B_n'(y) }, where aggr = $\begin{cases} min \\ max \end{cases}$

FITA: "First inference, then aggregate!"

- 1. Each rule of the form IF X is A_k THEN Y is B_k must be transformed by an appropriate fuzzy implication $Imp_k(\cdot,\cdot)$ to a relation R_k : $R_k(x, y) = Imp_k(A_k(x), B_k(y))$.
- 2. Determine $B_k'(y) = R_k(x, y) \circ A'(x)$ for all k = 1, ..., n (local inference).
- 3. Aggregate to $B'(y) = \beta(B_1'(y), ..., B_n'(y))$.

FATI: "First aggregate, then inference!"

- 1. Each rule of the form IF X ist A_k THEN Y ist B_k must be transformed by an appropriate fuzzy implication $Imp_k(\cdot, \cdot)$ to a relation R_k : $R_k(x, y) = Imp_k(A_k(x), B_k(y))$.
- 2. Aggregate $R_1, ..., R_n$ to a **superrelation** with aggregating function $\alpha(\cdot)$: $R(x, y) = \alpha(R_1(x, y), ..., R_n(x, y)).$
- 3. Determine B'(y) = R(x, y) \circ A'(x) w.r.t. superrelation (inference).

1. Which principle is better? FITA or FATI?

2. Equivalence of FITA and FATI?

FITA:
$$B'(y) = \beta(B_1'(y), ..., B_n'(y))$$

= $\beta(R_1(x, y) \circ A'(x), ..., R_n(x, y) \circ A'(x))$

FATI: B'(y) = R(x, y)
$$\circ$$
 A'(x)
= α (R₁(x, y), ..., R_n(x, y)) \circ A'(x)

special case:
$$A'(x) = \begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$$

crisp input!

On the equivalence of FITA and FATI:

FITA:
$$B'(y) = \beta(B_1'(y), ..., B_n'(y))$$
$$= \beta(Imp_1(A_1(x_0), B_1(y)), ..., Imp_n(A_n(x_0), B_n(y)))$$

FATI:
$$B'(y) = R(x, y) \circ A'(x)$$

$$= \sup_{x \in X} t(A'(x), R(x, y)) \qquad \text{(from now: special case)}$$

$$= R(x_0, y)$$

$$= \alpha(\operatorname{Imp}_1(A_1(x_0), B_1(y)), ..., \operatorname{Imp}_n(A_n(x_0), B_n(y)))$$

evidently: sup-t-composition with arbitrary t-norm and $\alpha(\cdot) = \beta(\cdot)$

AND-connected premises

IF
$$X_1 = A_{11}$$
 AND $X_2 = A_{12}$ AND ... AND $X_m = A_{1m}$ THEN $Y = B_1$

. . .

IF
$$X_n = A_{n1}$$
 AND $X_2 = A_{n2}$ AND ... AND $X_m = A_{nm}$ THEN $Y = B_n$

reduce to single premise for each rule k:

$$A_k(x_1,...,x_m) = \min \{ A_{k1}(x_1), A_{k2}(x_2), ..., A_{km}(x_m) \}$$

or in general: t-norm

OR-connected premises

IF
$$X_1 = A_{11}$$
 OR $X_2 = A_{12}$ OR ... OR $X_m = A_{1m}$ THEN $Y = B_1$

. . .

IF
$$X_n = A_{n1}$$
 OR $X_2 = A_{n2}$ OR ... OR $X_m = A_{nm}$ THEN $Y = B_n$

reduce to single premise for each rule k:

$$A_k(x_1,...,x_m) = \max \{ A_{k1}(x_1), A_{k2}(x_2), ..., A_{km}(x_m) \}$$

or in general: s-norm

important:

- if rules of the form IF X is A THEN Y is B interpreted as logical implication
 - \Rightarrow R(x, y) = Imp(A(x), B(y)) makes sense
- we obtain: $B'(y) = \sup_{x \in X} t(A'(x), R(x, y))$
- \Rightarrow the worse the match of premise A'(x), the larger is the fuzzy set B'(y)
- \Rightarrow follows immediately from axiom 1: a \leq b implies Imp(a, z) \geq Imp(b, z)

interpretation of output set B'(y):

- B'(y) is the set of values that are still possible
- each rule leads to an additional restriction of the values that are still possible
- \Rightarrow resulting fuzzy sets B'_k(y) obtained from single rules must be mutually <u>intersected!</u>
- \Rightarrow aggregation via $B'(y) = \min \{ B_1'(y), ..., B_n'(y) \}$

important:

• if rules of the form IF X is A THEN Y is B are not interpreted as logical implications, then the function Fct(⋅) in

$$R(x, y) = Fct(A(x), B(y))$$

can be chosen as required for desired interpretation.

- frequent choice (especially in fuzzy control):
 - $R(x, y) = min \{ A(x), B(x) \}$

Mamdani – "implication"

- R(x, y) = A(x) - B(x)

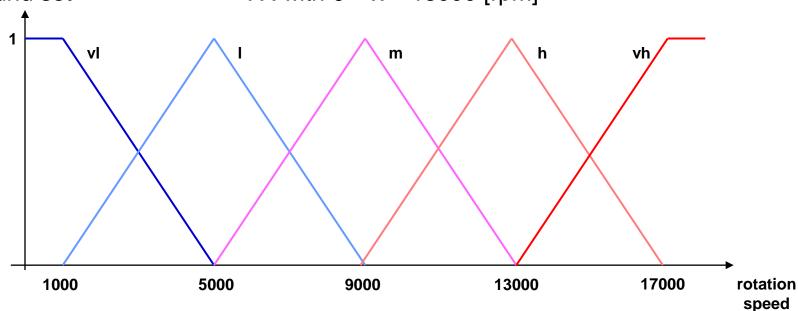
Larsen – "implication"

- ⇒ of course, they are no implications but specific t-norms!
- \Rightarrow thus, if <u>relation R(x, y) is given</u>, then the *composition rule of inference*

$$B'(y) = A'(x) \circ R(x, y) = \sup_{x \in X} \min \{ A'(x), R(x, y) \}$$

still can lead to a conclusion via fuzzy logic.

example: [JM96, S. 244ff.]

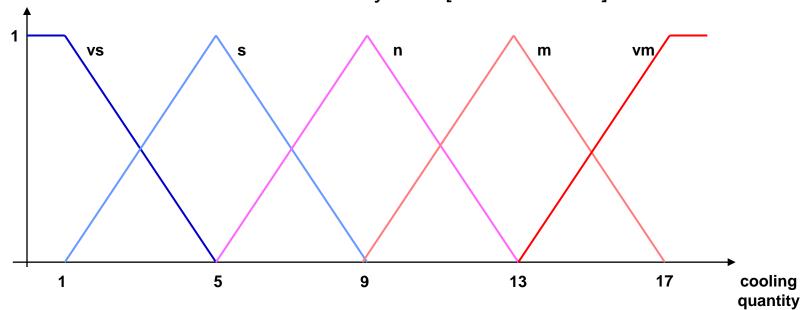

industrial drill machine → control of cooling supply

modelling

linguistic variable : rotation speed

linguistic terms : very low, low, medium, high, very high

ground set : X with $0 \le x \le 18000$ [rpm]


industrial drill machine → control of cooling supply

modelling

linguistic variable : cooling quantity

linguistic terms : very small, small, normal, much, very much

ground set : Y with $0 \le y \le 18$ [liter / time unit]

industrial drill machine → control of cooling supply

rule base

IF rotation speed IS very low THEN cooling quantity IS very small
low small
medium normal
high much
very high very much

sets S_{vl} , S_{l} , S_{m} , S_{h} , S_{vh} "rotation <u>speed</u>"

sets C_{vs} , C_{s} , C_{n} , C_{m} , C_{vm} "cooling quantity"

industrial drill machine → control of cooling supply

- **1.** input: crisp value $x_0 = 10000 \text{ min}^{-1}$ (not a fuzzy set!)
 - → **fuzzyfication** = determine membership for each fuzzy set over X
 - \rightarrow yields S' = (0, 0, $\frac{3}{4}$, $\frac{1}{4}$, 0) via x α ($S_{vl}(x_0)$, $S_{l}(x_0)$, $S_{m}(x_0)$, $S_{h}(x_0)$, $S_{vh}(x_0)$)
- 2. FITA: locale **inference** \Rightarrow since Imp(0,a) = 0 we only need to consider:

$$S_m$$
: $C'_n(y) = Imp(\frac{3}{4}, C_n(y))$

$$S_h$$
: $C'_m(y) = Imp(\frac{1}{4}, C_m(y))$

3. aggregation:

$$C'(y) = aggr \{ C'_n(y), C'_m(y) \} = max \{ (Imp(3/4, C_n(y)), (Imp(1/4, C_m(y)) \} \}$$

industrial drill machine → control of cooling supply

$$C'(y) = \max \{ Imp(\frac{3}{4}, C_n(y)), Imp(\frac{1}{4}, C_m(y)) \}$$

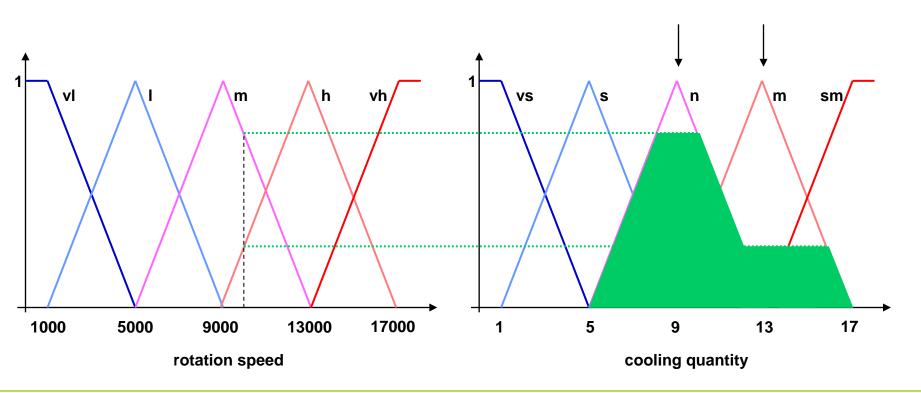
in case of control task typically no logic-based interpretation:

- → max-aggregation and
- \rightarrow relation R(x,y) not interpreted as implication.

often:
$$R(x,y) = min(a, b)$$
 "Mamdani controller"

thus:

$$C'(y) = \max \{ \min \{ \frac{3}{4}, C_n(y) \}, \min \{ \frac{1}{4}, C_m(y) \} \}$$


→ graphical illustration

Approximative Reasoning

example: (continued)

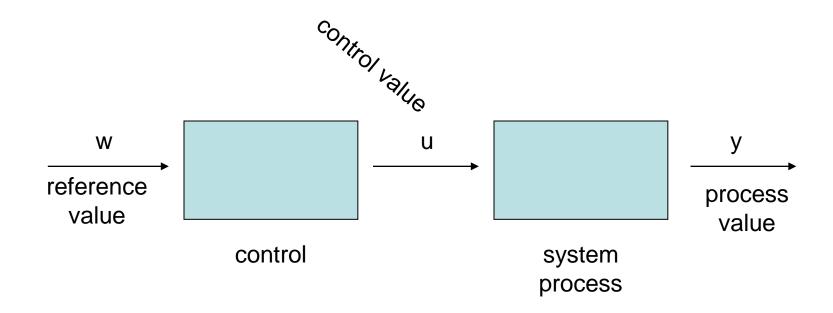
industrial drill machine → control of cooling supply

$$C'(y) = \max \{ \min \{ \frac{3}{4}, C_n(y) \}, \min \{ \frac{1}{4}, C_m(y) \} \}, x_0 = 10000 [rpm] \}$$

open and closed loop control:

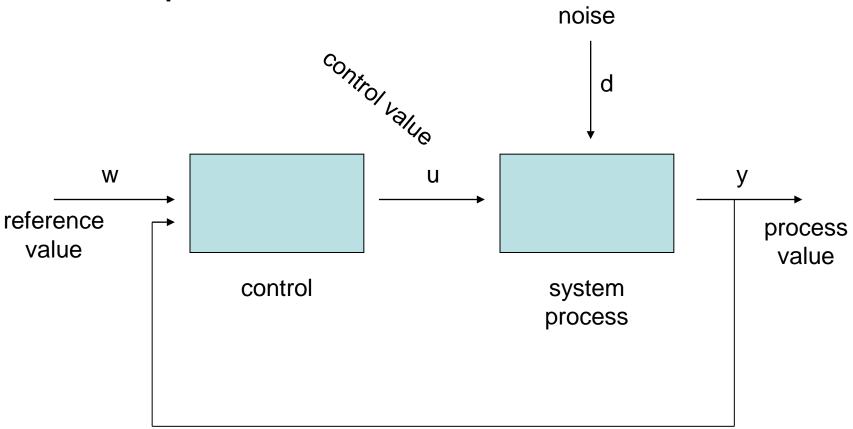
affect the dynamical behavior of a system in a desired manner

open loop control


control is aware of reference values and has a model of the system

⇒ control values can be adjusted,
such that process value of system is equal to reference value
problem: noise! ⇒ deviation from reference value not detected

closed loop control


now: detection of deviations from reference value possible (by means of measurements / sensors) and new control values can take into account the amount of deviation

open loop control

assumption: undisturbed operation \Rightarrow process value = reference value

closed loop control

control deviation = reference value – process value

required:

model of system / process

- → as differential equations or difference equations (DEs)
- → well developed theory available

so, why fuzzy control?

- there exists no process model in form of DEs etc.
 (operator/human being has realized control by hand)
- process with high-dimensional nonlinearities → no classic methods available
- control goals are vaguely formulated ("soft" changing gears in cars)

X is A'

Y is B'

fuzzy description of control behavior

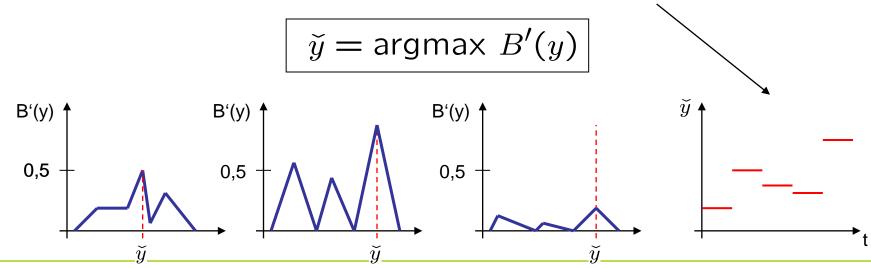
IF X is A_1 , THEN Y is B_1 IF X is A_2 , THEN Y is B_2 IF X is A_3 , THEN Y is B_3 ... IF X is A_n , THEN Y is B_n

similar to approximative reasoning

but fact A' is not a fuzzy set but a crisp input

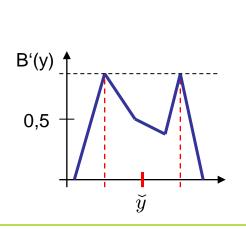
→ actually, it is the current process value

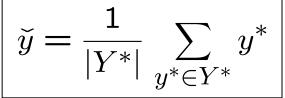
fuzzy controller executes inference step

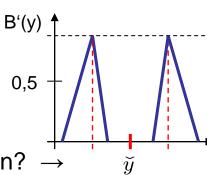

→ yields fuzzy output set B'(y)

but crisp control value required for the process / system

→ defuzzification (= "condense" fuzzy set to crisp value)

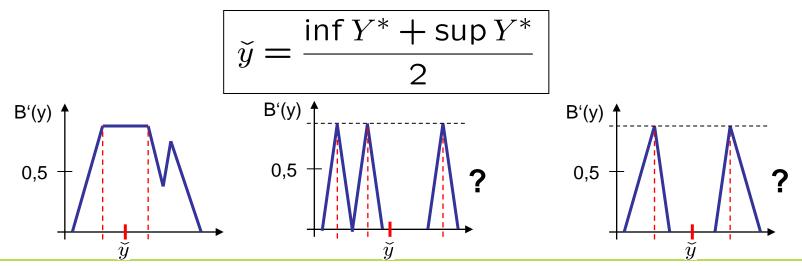

Def: rule k active $\Leftrightarrow A_k(x_0) > 0$


- maximum method
 - only active rule with largest activation level is taken into account
 - → suitable for pattern recognition / classification
 - → decision for a single alternative among finitely many alternatives
 - selection independent from activation level of rule (0.05 vs. 0.95)
 - if used for control: incontinuous curve of output values (leaps)



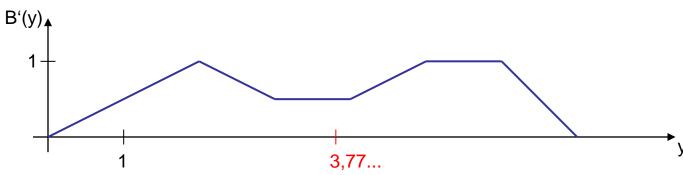
$$Y^* = \{ y \in Y : B'(y) = hgt(B') \}$$

- maximum mean value method
 - all active rules with largest activation level are taken into account
 - → interpolations possible, but need not be useful
 - → obviously, only useful for neighboring rules with max. activation
 - selection independent from activation level of rule (0.05 vs. 0.95)
 - if used in control: incontinuous curve of output values (leaps)



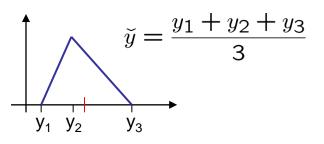
$$Y^* = \{ y \in Y: B'(y) = hgt(B') \}$$

- center-of-maxima method (COM)
 - only extreme active rules with largest activation level are taken into account
 - → interpolations possible, but need not be useful
 - → obviously, only useful for neighboring rules with max. activation level
 - selection independent from activation level of rule (0.05 vs. 0.95)
 - in case of control: incontinuous curve of output values (leaps)

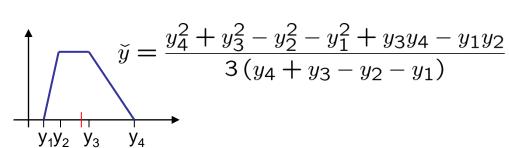


- Center of Gravity (COG)
 - all active rules are taken into account
 - → but numerically expensiveonly valid for HW solution, today!
 - → borders cannot appear in output (∃ work-around)
 - if only single active rule: independent from activation level
 - continuous curve for output values

$$\check{y} = \frac{\int y \cdot B'(y) \, dy}{\int B'(y) \, dy}$$

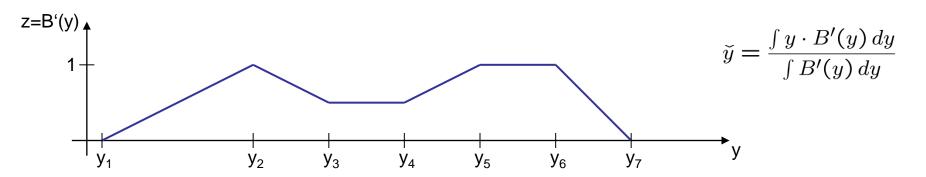

Excursion: COG

$$\widetilde{y} = \frac{\int y \cdot B'(y) \, dy}{\int B'(y) \, dy}$$



pendant in probability theory: expectation value

triangle:



trapezoid:

Fuzzy Control

Lecture 05

assumption: fuzzy membership functions piecewise linear

output set B'(y) represented by sequence of points $(y_1, z_1), (y_2, z_2), ..., (y_n, z_n)$

- ⇒ area under B'(y) and weighted area can be determined additively piece by piece
- \Rightarrow linear equation $z = m y + b \Rightarrow$ insert (y_i, z_i) and (y_{i+1}, z_{i+1})
- ⇒ yields m and b for each of the n-1 linear sections

$$\Rightarrow F_i = \int_{y_i}^{y_{i+1}} (my+b) \, dy = \frac{m}{2} (y_{i+1}^2 - y_i^2) + b(y_{i+1} - y_i)$$

$$\Rightarrow G_i = \int_{y_i}^{y_{i+1}} y(my+b) \, dy = \frac{m}{3} (y_{i+1}^3 - y_i^3) + \frac{b}{2} (y_{i+1}^2 - y_i^2)$$

$$y = \frac{\sum_{i} G_i}{\sum_{i} F_i}$$

- Center of Area (COA)
 - developed as an approximation of COG
 - let \hat{y}_k be the COGs of the output sets $B'_k(y)$:

$$\check{y} = \frac{\sum_{k} A_k(x_0) \cdot \hat{y}_k}{\sum_{k} A_k(x_0)}$$

how to:

assume that fuzzy sets $A_k(x)$ and $B_k(x)$ are triangles or trapezoids let x_0 be the crisp input value for each fuzzy rule "IF A_k is X THEN B_k is Y" determine $B_k'(y) = R(A_k(x_0), B_k(y))$, where R(.,.) is the relation find \hat{y}_k as center of gravity of $B_k'(y)$