technische universität dortmund
 Computational Intelligence

Winter Term 2019/20

- Introduction to ANN
- McCulloch Pitts Neuron (MCP)
- Minsky / Papert Perceptron (MPP)

Introduction to Artificial Neural Networks Lecture 10

Abstraction


```
Lecture }1
```

Model
McCulloch-Pitts-Neuron 1943:

$$
\begin{aligned}
& x_{i} \in\{0,1\}=: \mathbb{B} \\
& \mathrm{f}: \mathbb{B}^{\mathrm{n}} \rightarrow \mathbb{B}
\end{aligned}
$$

technische universität
G. Rudolph: Computational Intelligence • Winter Term 2019/20
dortmund

1943: Warren McCulloch / Walter Pitts

- description of neurological networks
\rightarrow modell: McCulloch-Pitts-Neuron (MCP)
- basic idea:
- neuron is either active or inactive
- skills result from connecting neurons
- considered static networks
(i.e. connections had been constructed and not learnt)

Introduction to Artificial Neural Networks Lecture 10

McCulloch-Pitts-Neuron

n binary input signals $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$
threshold $\theta>0$

NOT

in addition: m binary inhibitory signals $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}$
$\tilde{f}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)=f\left(x_{1}, \ldots, x_{n}\right) \cdot \prod_{j=1}^{m}\left(1-y_{j}\right)$

- if at least one $y_{j}=1$, then output $=0$
- otherwise:
- sum of inputs \geq threshold, then output $=1$

$$
\text { else output }=0
$$

Assumption:

inputs also available in inverted form, i.e. \exists inverted inputs.

Theorem:

Every logical function $F: \mathbb{B}^{n} \rightarrow \mathbb{B}$ can be simulated with a two-layered McCulloch/Pitts net.

Example: $\quad F(x)=x_{1} x_{2} \bar{x}_{3} \vee \bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \vee x_{1} \bar{x}_{4}$

technische universität
G. Rudolph: Computational Intelligence • Winter Term 2019/20
dortmund

Introduction to Artificial Neural Networks

Proof: (by construction)
Every boolean function F can be transformed in disjunctive normal form
$\Rightarrow 2$ layers (AND - OR)

1. Every clause gets a decoding neuron with $\theta=\mathrm{n}$ \Rightarrow output = 1 only if clause satisfied (AND gate)
2. All outputs of decoding neurons are inputs of a neuron with $\theta=1$ (OR gate)

Lecture 10

Introduction to Artificial Neural Networks

Lecture 10

Generalization: inputs with weights

fires 1 if

$$
\begin{array}{r}
0,2 x_{1}+0,4 x_{2}+0,3 x_{3} \geq 0,7 \tag{10}\\
2 x_{1}+4 x_{2}+3 x_{3} \geq 7
\end{array}
$$

\Downarrow
x_{3}

\Rightarrow equivalent!
technische universität
G. Rudolph: Computational Intelligence • Winter Term 2019/20
dortmund

Introduction to Artificial Neural Networks

Lecture 10

Theorem:

Weighted and unweighted MCP-nets are equivalent for weights $\in Q^{+}$.

Proof:

" \Rightarrow "

$$
\text { Let } \sum_{i=1}^{n} \frac{a_{i}}{b_{i}} x_{i} \geq \frac{a_{0}}{b_{0}} \text { with } a_{i}, b_{i} \in \mathrm{~N}
$$

Multiplication with $\prod_{i=0}^{n} b_{i}$ yields inequality with coefficients in \mathbb{N}
Duplicate input x_{i}, such that we get $a_{i} b_{1} b_{2} \square b_{i-1} b_{i+1} \square b_{n}$ inputs.
Threshold $\theta=\mathrm{a}_{0} \mathrm{~b}_{1} \square \mathrm{~b}_{\mathrm{n}}$
" \Leftarrow "
Set all weights to 1.
technische universtät

Conclusion for MCP nets

+ feed-forward: able to compute any Boolean function
+ recursive: able to simulate DFA
- very similar to conventional logical circuits
- difficult to construct
- no good learning algorithm available

Introduction to Artificial Neural Networks

Lecture 10

Perceptron (Rosenblatt 1958)

\rightarrow complex model \rightarrow reduced by Minsky \& Papert to what is „necessary"
\rightarrow Minsky-Papert perceptron (MPP), $1969 \rightarrow$ essential difference: $x \in[0,1] \subset R$

What can a single MPP do?

$$
w_{1} x_{1}+w_{2} x_{2} \geq \theta \stackrel{\mathrm{N}}{\mathrm{~N}} 0
$$

$$
\text { isolation of } x_{2} \text { yields: }
$$

$$
x_{2} \geq \frac{\theta}{w_{2}}-\frac{w_{1}}{w_{2}} x_{1} \xlongequal{\mathrm{Y}} 0
$$

Example:

$$
\begin{aligned}
& 0,9 x_{1}+0,8 x_{2} \geq 0,6 \\
& \Leftrightarrow \quad x_{2} \geq \frac{3}{4}-\frac{9}{8} x_{1}
\end{aligned}
$$

separating line separates R^{2} in 2 classes
technische universität dortmund

Introduction to Artificial Neural Networks

Lecture 10

1969: Marvin Minsky / Seymor Papert

- book Perceptrons \rightarrow analysis math. properties of perceptrons
- disillusioning result:
perceptions fail to solve a number of trivial problems!

> - XOR Problem

- Parity Problem
- Connectivity Problem
- "conclusion": all artificial neurons have this kind of weakness! \Rightarrow research in this field is a scientific dead end!
- consequence: research funding for ANN cut down extremely (~ 15 years)

how to leave the „dead end":

1. Multilayer Perceptrons:

2. Nonlinear separating functions:

$$
\text { XOR } \quad g\left(x_{1}, x_{2}\right)=2 x_{1}+2 x_{2}-4 x_{1} x_{2}-1 \quad \text { with } \quad \theta=0
$$

$$
\begin{aligned}
& g(0,0)=-1 \\
& g(0,1)=+1 \\
& g(1,0)=+1 \\
& g(1,1)=-1
\end{aligned}
$$

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2019/20
dortmund

Introduction to Artificial Neural Networks
Lecture 10

Perceptron Learning

Assumption: test examples with correct I/O behavior available

Principle:

(1) choose initial weights in arbitrary manner
(2) feed in test pattern
(3) if output of perceptron wrong, then change weights
(4) goto (2) until correct output for all test paterns

graphically:

\rightarrow translation and rotation of separating lines

Introduction to Artificial Neural Networks

Lecture 10

How to obtain weights w_{i} and threshold θ ?

as yet: by construction
example: NAND-gate

x_{1}	x_{2}	NAND
0	0	1
0	1	1
1	0	1
1	1	0

$$
\begin{aligned}
& \Rightarrow 0 \geq \theta \\
& \Rightarrow \mathrm{w}_{2} \geq \theta \\
& \Rightarrow \mathrm{w}_{1} \geq \theta \\
& \Rightarrow \mathrm{w}_{1}+\mathrm{w}_{2}<\theta
\end{aligned}
$$

$$
\Rightarrow w_{2} \geq \theta \quad\langle\quad \text { requires solution of a system of }
$$

$$
\text { linear inequalities }(\in P)
$$

$$
\left(e . g .: w_{1}=w_{2}=-2, \theta=-3\right)
$$

now: by „learning" / training dortmund

Introduction to Artificial Neural Networks Lecture 10

Example

$$
\begin{aligned}
& P=\left\{\binom{1}{1},\binom{1}{-1},\binom{0}{-1}\right\} \\
& N=\left\{\binom{-1}{-1},\binom{-1}{1},\binom{0}{1}\right\}
\end{aligned}
$$

threshold as a weight: $\mathrm{w}=\left(\theta, \mathrm{w}_{1}, \mathrm{w}_{2}\right)^{4}$

$$
\begin{array}{ll}
1 & -\theta \\
x_{1} & \overline{w_{1}} \\
x_{2} & \frac{\mathrm{w}_{1}}{\mathrm{w}_{2}}
\end{array}
$$

\Downarrow
$P=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)\right\}$
$N=\left\{\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$
suppose initial vector of weights is
$w^{(0)}=(1,-1,1)$

Introduction to Artificial Neural Networks

Lecture 10

Perceptron Learning

 N : set of negative examples $\quad \rightarrow$ output 0 threshold θ integrated in weights1. choose w_{0} at random, $t=0$
2. choose arbitrary $x \in P \cup N$
3. if $x \in P$ and $w_{t}^{\prime} x>0$ then goto 2 if $x \in N$ and $w_{t}^{\prime} x \leq 0$ then goto 2
4. if $x \in P$ and $w_{t}^{\prime} x \leq 0$ then

$$
w_{t+1}=w_{t}+x ; t++; \text { goto } 2
$$

5. if $x \in N$ and $w_{t}^{*} x>0$ then $w_{t+1}=w_{t}-\mathrm{x} ; \mathrm{t}++$; goto 2
6. stop? If I/O correct for all examples!
remark: algorithm converges, is finite, worst case: exponential runtime
\square technische universität
G. Rudolph: Computational Intelligence • Winter Term 2019/20
dortmund

Single-Layer Perceptron (SLP)

Lecture 10

Generalization:

Assumption: $x \in \mathbb{R}^{n} \quad \Rightarrow\|x\|>0$ for all $x \neq(0, \ldots, 0)^{\text {c }}$
as before: $\mathrm{w}_{\mathrm{t}+1}=\mathrm{w}_{\mathrm{t}}+(\delta+\varepsilon) \mathrm{x}$ for $\varepsilon>0$ (small) and $\delta=-\mathrm{w}_{\mathrm{t}}^{\mathrm{t}} \mathrm{x}>0$

$$
\Rightarrow \mathrm{w}_{\mathrm{t}+1}^{\iota_{\mathrm{t}} \mathrm{x}=}=\underbrace{\delta\left(\|\mathrm{x}\|^{2}-1\right)}_{<0 \text { possible! }>0}+\underbrace{\varepsilon\|\mathrm{x}\|^{2}}_{>0}
$$

Idea: Scaling of data does not alter classification task (if threshold 0)!
Let $\ell=\min \{\|x\|: x \in B\}>0$
Set $\hat{x}=\frac{x}{\ell} \quad \Rightarrow$ set of scaled examples \hat{B}

$$
\Rightarrow\|\hat{x}\| \geq 1 \quad \Rightarrow \quad\|\hat{x}\|^{2}-1 \geq 0 \quad \Rightarrow \quad w_{t+1}^{\prime} \hat{x}>0
$$

Single-Layer Perceptron (SLP)

Lecture 10

Acceleration of Perceptron Learning

Assumption: $x \in\{0,1\}^{n} \Rightarrow\|x\|=\sum_{i=1}^{n}\left|x_{i}\right| \geq 1$ for all $x \neq(0, \ldots, 0)^{\text {c }}$
Let $B=P \cup\{-x: x \in N\}$
(only positive examples)

If classification incorrect, then $w^{\prime} x<0$. \qquad \uparrow

Consequently, size of error is just $\delta=-w^{\prime} x>0$.
$\Rightarrow \mathrm{w}_{\mathrm{t}+1}=\mathrm{w}_{\mathrm{t}}+(\delta+\varepsilon) \times$ for $\varepsilon>0$ (small) corrects error in a single step, since

$$
\mathrm{w}_{\mathrm{t}+1}^{\mathrm{s}} \mathrm{x}=\left(\mathrm{w}_{\mathrm{t}}+(\delta+\varepsilon) \mathrm{x}\right)^{\cdot} \mathrm{x}
$$

$=\underbrace{w_{t}^{\prime}} x+(\delta+\varepsilon) x^{\prime} x$
$=-\delta+\delta\|x\|^{2}+\varepsilon\|x\|^{2}$
$=\delta\left(\|x\|^{2}-1\right)+\varepsilon\|x\|^{2}>0 \quad$ $\quad \underbrace{-}$
$\underbrace{8} \underbrace{\varepsilon ـ}_{>0}$
$\geq 0 \quad>0$
technische universität
dortmund
G. Rudolph: Computational Intelligence • Winter Term 2019/20

Single-Layer Perceptron (SLP)

Lecture 10

There exist numerous variants of Perceptron Learning Methods.

Theorem: (Duda \& Hart 1973)

If rule for correcting weights is $w_{t+1}=w_{t}+\gamma_{t} x \quad\left(\right.$ if $\left.w_{t}^{\prime} x<0\right)$

1. $\forall \mathrm{t} \geq 0: \gamma_{\mathrm{t}} \geq 0$
2. $\sum_{t=0}^{\infty} \gamma_{t}=\infty$
3. $\lim _{m \rightarrow \infty} \frac{\sum_{t=0}^{m} \gamma_{t}^{2}}{\left(\sum_{t=0}^{m} \gamma_{t}\right)^{2}}=0$
then $\mathrm{w}_{\mathrm{t}} \rightarrow \mathrm{w}^{*}$ for $\mathrm{t} \rightarrow \infty$ with $\forall \mathrm{x}: \mathrm{x}^{\mathrm{c}} \mathrm{w}^{*}>0$
e.g.: $\quad \gamma_{t}=\gamma>0$ or $\gamma_{t}=\gamma /(t+1)$ for $\gamma>0$

Single-Layer Perceptron (SLP)

Lecture 10

as yet: Online Learning
\rightarrow Update of weights after each training pattern (if necessary)
now: Batch Learning
\rightarrow Update of weights only after test of all training patterns
\rightarrow Update rule:

$$
\mathrm{w}_{\mathrm{t}+1}=\mathrm{w}_{\mathrm{t}}+\gamma \sum_{\substack{w_{\mathrm{t}}^{\prime} \mathrm{x}<0 \\ \mathrm{x} \in \mathrm{~B}}} \mathrm{x} \quad(\gamma>0)
$$

vague assessment in literature:

- advantage : „usually faster"
- disadvantage : „needs more memory"
just a single vector!
dechnische universität
G. Rudolph: Computational Intelligence • Winter Term 2019/20
dortmund

Single-Layer Perceptron (SLP)

Lecture 10

Gradient method

$w_{t+1}=w_{t}-\gamma \nabla f\left(w_{t}\right)$

$$
\begin{aligned}
& \text { Gradient points in direction of } \\
& \text { steepest ascent of function } f(\cdot)
\end{aligned}
$$

$$
\text { Gradient } \quad \nabla f(w)=\left(\frac{\partial f(w)}{\partial w_{1}}, \frac{\partial f(w)}{\partial w_{2}}, \ldots, \frac{\partial f(w)}{\partial w_{n}}\right)
$$

Caution:

$$
\frac{\partial f(w)}{\partial w_{i}}=-\frac{\partial}{\partial w_{i}} \sum_{x \in F(w)} w^{\prime} x=-\frac{\partial}{\partial w_{i}} \sum_{x \in F(w)} \sum_{j=1}^{n} w_{j} \cdot x_{j}
$$ vector w; they are not the iteration counters!

$$
=-\sum_{x \in F(w)} \frac{\partial}{\partial w_{i}}\left(\sum_{j=1}^{n} w_{j} \cdot x_{j}\right)=-\sum_{x \in F(w)} x_{i}
$$

Single-Layer Perceptron (SLP)

Lecture 10

find weights by means of optimization

Let $F(w)=\left\{x \in B: w^{\prime} x<0\right\}$ be the set of patterns incorrectly classified by weight w.

Objective function:

$$
f(w)=\sum_{x \in F(w)}^{-} w^{\prime} x \rightarrow \min !
$$

Optimum:

$$
f(w)=0 \quad \text { iff } F(w) \text { is empty }
$$

Possible approach: gradient method

$$
\mathrm{w}_{\mathrm{t}+1}=\mathrm{w}_{\mathrm{t}}-\gamma \nabla \mathrm{f}\left(\mathrm{w}_{\mathrm{t}}\right) \quad(\gamma>0)
$$

converges to a local minimum (dep. on w_{0})
\square

Single-Layer Perceptron (SLP)

Lecture 10

Gradient method

thus:
gradient $\quad \nabla f(w)=\left(\frac{\partial f(w)}{\partial w_{1}}, \frac{\partial f(w)}{\partial w_{2}}, \ldots, \frac{\partial f(w)}{\partial w_{n}}\right)^{\prime}$

$$
\begin{aligned}
& =\left(\sum_{x \in F(w)} x_{1},-\sum_{x \in F(w)} x_{2}, \ldots,-\sum_{x \in F(w)} x_{n}\right)^{\prime} \\
& =-\sum_{x \in F(w)} x
\end{aligned}
$$

$$
\Rightarrow w_{t+1}=w_{t}+\gamma \sum_{x \in F\left(w_{t}\right)} x
$$

Single-Layer Perceptron (SLP)

Lecture 10

How difficult is it

(a) to find a separating hyperplane, provided it exists?
(b) to decide, that there is no separating hyperplane?

Let $B=P \cup\{-x: x \in N\} \quad$ (only positive examples), $w_{i} \in \mathbb{R}, \theta \in R,|B|=m$
For every example $x_{i} \in B$ should hold:
$\mathrm{x}_{\mathrm{i} 1} \mathrm{w}_{1}+\mathrm{x}_{\mathrm{i} 2} \mathrm{w}_{2}+\ldots+\mathrm{x}_{\mathrm{in}} \mathrm{w}_{\mathrm{n}} \geq \theta \quad \rightarrow$ trivial solution $\mathrm{w}_{\mathrm{i}}=\theta=0$ to be excluded!
Therefore additionally: $\eta \in R$
$\mathrm{x}_{\mathrm{i} 1} \mathrm{w}_{1}+\mathrm{x}_{\mathrm{i} 2} \mathrm{w}_{2}+\ldots+\mathrm{x}_{\mathrm{in}} \mathrm{w}_{\mathrm{n}}-\theta-\eta \geq 0$
Idea: η maximize \rightarrow if $\eta^{*}>0$, then solution found

Matrix notation:

$$
A=\left(\begin{array}{ccc}
x_{1}^{\prime} & -1 & -1 \\
x_{2}^{\prime} & -1 & -1 \\
\vdots & \vdots & \vdots \\
x_{m}^{\prime} & -1 & -1
\end{array}\right) \quad z=\left(\begin{array}{c}
w \\
\theta \\
\eta
\end{array}\right)
$$

Linear Programming Problem:

$f\left(z_{1}, z_{2}, \ldots, z_{n}, z_{n+1}, z_{n+2}\right)=z_{n+2} \rightarrow \max !$
s.t. $A z \geq 0$
calculated by e.g. Kamarkaralgorithm in polynomial time

If $z_{n+2}=\eta>0$, then weights and threshold are given by z.
Otherwise separating hyperplane does not exist!
dechnische universität

