

Computational Intelligence

Winter Term 2019/20

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Introduction to ANN

- McCulloch Pitts Neuron (MCP)
- Minsky / Papert Perceptron (MPP)

Biological Prototype

dortmund

Lecture 10

1943: Warren McCulloch / Walter Pitts

- description of neurological networks
 → modell: McCulloch-Pitts-Neuron (MCP)
- basic idea:
 - neuron is either active or inactive
 - skills result from *connecting* neurons
- considered static networks

(i.e. connections had been constructed and not learnt)

McCulloch-Pitts-Neuron

n binary input signals $x_1, ..., x_n$ threshold $\theta > 0$ $f(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } \sum_{i=1}^n x_i \ge \theta \\ 0 & \text{else} \end{cases}$ **boolean OR boolean AND** \Rightarrow can be realized: ≥ 1 ≥n

 $\theta = 1$

technische universität

dortmund

Xn

G. Rudolph: Computational Intelligence • Winter Term 2019/20

 $\theta = n$

Xn

McCulloch-Pitts-Neuron

n binary input signals $x_1, ..., x_n$ threshold $\theta > 0$

in addition: m binary inhibitory signals y1, ..., ym

$$\tilde{f}(x_1, \ldots, x_n; y_1, \ldots, y_m) = f(x_1, \ldots, x_n) \cdot \prod_{j=1}^m (1-y_j)$$

- if at least one $y_j = 1$, then output = 0
- otherwise:
 - sum of inputs \geq threshold, then output = 1
 - else output = 0

m

Assumption:

inputs also available in inverted form, i.e. \exists inverted inputs.

Theorem:

Every logical function F: $\mathbb{B}^n \to \mathbb{B}$ can be simulated with a two-layered McCulloch/Pitts net.

Example:

Proof: (by construction)

Every boolean function F can be transformed in disjunctive normal form

- \Rightarrow 2 layers (AND OR)
- 1. Every clause gets a decoding neuron with $\theta = n$ \Rightarrow output = 1 only if clause satisfied (AND gate)
- 2. All outputs of decoding neurons are inputs of a neuron with $\theta = 1$ (OR gate)

q.e.d.

Lecture 10

Generalization: inputs with weights

Theorem:

Weighted and unweighted MCP-nets are equivalent for weights $\in \mathbb{Q}^+$.

Proof:
"" Let
$$\sum_{i=1}^{n} \frac{a_i}{b_i} x_i \ge \frac{a_0}{b_0}$$
 with $a_i, b_i \in \mathbb{N}$
Multiplication with $\prod_{i=0}^{n} b_i$ yields inequality with coefficients in \mathbb{N}

Duplicate input x_i , such that we get $a_i b_1 b_2 \square b_{i-1} b_{i+1} \square b_n$ inputs.

Threshold $\theta = a_0 b_1 \Box b_n$

"⇐"

Set all weights to 1.

q.e.d.

Conclusion for MCP nets

- + feed-forward: able to compute any Boolean function
- + recursive: able to simulate DFA
- very similar to conventional logical circuits
- difficult to construct
- no good learning algorithm available

Lecture 10

Perceptron (Rosenblatt 1958)

dortmund

- \rightarrow complex model \rightarrow reduced by Minsky & Papert to what is "necessary"
- → Minsky-Papert perceptron (MPP), 1969 → essential difference: $x \in [0,1] \subset \mathbb{R}$

dortmund

1969: Marvin Minsky / Seymor Papert

- book *Perceptrons* \rightarrow analysis math. properties of perceptrons
- disillusioning result: perceptions fail to solve a number of trivial problems!
 - XOR Problem
 - Parity Problem
 - Connectivity Problem
- "conclusion": all artificial neurons have this kind of weakness!
 ⇒ research in this field is a scientific dead end!
- consequence: research funding for ANN cut down extremely (~ 15 years)

Lecture 10

how to leave the "dead end":

1. Multilayer Perceptrons:

 \Rightarrow realizes XOR

2. Nonlinear separating functions:

XOR $g(x_1, x_2) = 2x_1 + 2x_2 - 4x_1x_2 - 1$ with $\theta = 0$ g(0,0) = -1 g(0,1) = +1 g(1,0) = +1g(1,1) = -1

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2019/20 17

How to obtain weights w_i and threshold θ ?

as yet: by construction

example: NAND-gate

x ₁	x ₂	NAND	
0	0	1	\Rightarrow 0
0	1	1	\Rightarrow M
1	0	1	\Rightarrow M
1	1	0	\Rightarrow M

$$\Rightarrow 0 \ge \theta$$
$$\Rightarrow W_2 \ge \theta$$
$$\Rightarrow W_1 \ge \theta$$
$$\Rightarrow W_1 + W_2 < \theta$$

requires solution of a system of linear inequalities ($\in P$)

(e.g.:
$$w_1 = w_2 = -2, \ \theta = -3$$
)

now: by "learning" / training

Perceptron Learning

Assumption: test examples with correct I/O behavior available

Principle:

- (1) choose initial weights in arbitrary manner
- (2) feed in test pattern
- (3) if output of perceptron wrong, then change weights
- (4) goto (2) until correct output for all test paterns

graphically:

 \rightarrow translation and rotation of separating lines

G. Rudolph: Computational Intelligence • Winter Term 2019/20 19

Introduction to Artificial Neural Networks

Lecture 10

Example \bigcirc \bullet $P = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\}$ \bullet \bigcirc \bullet $N = \left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ \circ

threshold as a weight: $w = (\theta, w_1, w_2)^{\circ}$

$$P = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$
$$N = \left\{ \begin{pmatrix} 1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$$

suppose initial vector of weights is

$$W^{(0)} = (1, -1, 1)^{\circ}$$

Perceptron Learning

P: set of positive examples N: set of negative examples threshold θ integrated in weights

 \rightarrow output 1 \rightarrow output 0

- 1. choose w_0 at random, t = 0
- 2. choose arbitrary $x \in P \cup N$
- 3. if $x \in P$ and $w_t \cdot x > 0$ then goto 2 if $x \in N$ and $w_t \cdot x \leq 0$ then goto 2
- 4. if $x \in P$ and $w_t \cdot x \leq 0$ then $w_{t+1} = w_t + x$; t++; goto 2
- 5. if $x \in N$ and $w_t \cdot x > 0$ then $w_{t+1} = w_t - x$; t++; goto 2
- 6. stop? If I/O correct for all examples!

 $\left. \begin{array}{l} \text{I/O correct!} \\ \text{let } w'x \leq 0, \text{ should be } > 0! \\ (w+x)'x = w'x + x'x > w'x \\ \text{let } w'x > 0, \text{ should be } \leq 0! \\ (w-x)'x = w'x - x'x < w'x \end{array} \right.$

Lecture 10

remark: algorithm converges, is finite, worst case: exponential runtime

Acceleration of Perceptron LearningAssumption: $x \in \{0, 1\}^n \Rightarrow ||x|| = \sum_{i=1}^n |x_i| \ge 1$ for all $x \neq (0, ..., 0)$ 'Let $B = P \cup \{-x : x \in N\}$ (only positive examples)If classification incorrect, then w'x < 0.</td>

Consequently, size of error is just $\delta = -w'x > 0$.

$$\Rightarrow$$
 w_{t+1} = w_t + (δ + ϵ) x for ϵ > 0 (small) corrects error in a single step, since

$$w'_{t+1}x = (w_t + (\delta + \varepsilon) x)' x$$

$$= w'_t x + (\delta + \varepsilon) x' x$$

$$= -\delta + \delta ||x||^2 + \varepsilon ||x||^2$$

$$= \delta (||x||^2 - 1) + \varepsilon ||x||^2 > 0 \qquad \bowtie$$

$$\geq 0 \qquad > 0$$

Generalization:

Assumption: $x \in \mathbb{R}^n \implies ||x|| > 0$ for all $x \neq (0, ..., 0)$

as before: $w_{t+1} = w_t + (\delta + \varepsilon) x$ for $\varepsilon > 0$ (small) and $\delta = -w_t^{\circ} x > 0$

$$\Rightarrow w'_{t+1}x = \delta (||x||^2 - 1) + \varepsilon ||x||^2$$

< 0 possible! > 0

Idea: Scaling of data does not alter classification task (if threshold 0)!

Let
$$\ell = \min \{ ||x|| : x \in B \} > 0$$

Set
$$\hat{\mathbf{x}} = \frac{\mathbf{x}}{\ell} \implies$$
 set of scaled examples $\hat{\mathbf{B}}$
 $\Rightarrow || \hat{\mathbf{x}} || \ge 1 \implies || \hat{\mathbf{x}} ||^2 - 1 \ge 0 \implies w'_{t+1} \hat{\mathbf{x}} > 0 \square$

U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2019/20 23 There exist numerous variants of Perceptron Learning Methods.

```
Theorem: (Duda & Hart 1973)
 If rule for correcting weights is w_{t+1} = w_t + \gamma_t x (if w'_t x < 0)
 1. \forall t \ge 0 : \gamma_t \ge 0
2. \sum_{t=0}^{\infty} \gamma_t = \infty
 3. \lim_{m \to \infty} \frac{\sum_{t=0}^{m} \gamma_t^2}{\left(\sum_{t=0}^{m} \gamma_t\right)^2} = 0
 then w_t \rightarrow w^* for t \rightarrow \infty with \forall x: x'w^* > 0.
```

e.g.:
$$\gamma_t = \gamma > 0$$
 or $\gamma_t = \gamma / (t+1)$ for $\gamma > 0$

as yet: Online Learning

→ Update of weights after each training pattern (if necessary)

now: Batch Learning

→ Update of weights only after test of all training patterns

 \rightarrow Update rule:

$$w_{t+1} = w_t + \gamma \sum_{\substack{w'_t \\ x \in B}} x \qquad (\gamma > 0)$$

vague assessment in literature:

- advantage : "usually faster"

J technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2019/20 25

find weights by means of optimization

Let $F(w) = \{x \in B : w'x < 0\}$ be the set of patterns incorrectly classified by weight w.

Objective function:

$$f(w) = -\sum_{x \in F(w)} w'x \rightarrow min!$$

Optimum:

$$f(w) = 0$$
 iff $F(w)$ is empty

Possible approach: gradient method

 $w_{t+1} = w_t - \gamma \nabla f(w_t) \qquad (\gamma > 0)$

converges to a <u>local</u> minimum (dep. on w_0)

Gradient method

 $\mathbf{w}_{t+1} = \mathbf{w}_t - \gamma \, \nabla \mathbf{f}(\mathbf{w}_t)$

Gradient points in direction of steepest ascent of function $f(\cdot)$

Gradient
$$\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \frac{\partial f(w)}{\partial w_2}, \dots, \frac{\partial f(w)}{\partial w_n}\right)$$

$$\frac{\partial f(w)}{\partial w_i} = -\frac{\partial}{\partial w_i} \sum_{x \in F(w)} w'x = -\frac{\partial}{\partial w_i} \sum_{x \in F(w)} \sum_{j=1}^n w_j \cdot x_j$$

Caution.

$$= -\sum_{x \in F(w)} \underbrace{\frac{\partial}{\partial w_i} \left(\sum_{j=1}^n w_j \cdot x_j \right)}_{x_i} = -\sum_{x \in F(w)} x_i$$

U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2019/20 27

Gradient method

thus:

gradient
$$\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \frac{\partial f(w)}{\partial w_2}, \dots, \frac{\partial f(w)}{\partial w_n}\right)'$$

$$= \left(\sum_{x \in F(w)} x_1, \sum_{x \in F(w)} x_2, \dots, \sum_{x \in F(w)} x_n\right)'$$
$$= \sum_{x \in F(w)} x_x$$

$$\Rightarrow w_{t+1} = w_t + \gamma \sum_{x \in F(w_t)} x$$

technische universität

dortmund

gradient method \Leftrightarrow batch learning

How difficult is it

(a) to find a separating hyperplane, provided it exists?

(b) to decide, that there is no separating hyperplane?

Let B = P \cup { -x : x \in N } (only positive examples), w_i \in R , $\theta \in$ R , |B| = m

For every example $x_i \in B$ should hold:

 $x_{i1} w_1 + x_{i2} w_2 + ... + x_{in} w_n \ge \theta \rightarrow \text{trivial solution } w_i = \theta = 0 \text{ to be excluded!}$

Therefore additionally: $\eta \in \mathbb{R}$

 $x_{i1} w_1 + x_{i2} w_2 + ... + x_{in} w_n - \theta - \eta \ge 0$

Idea: η maximize \rightarrow if $\eta^* > 0$, then solution found

Matrix notation:

$$A = \begin{pmatrix} x'_{1} & -1 & -1 \\ x'_{2} & -1 & -1 \\ \vdots & \vdots & \vdots \\ x'_{m} & -1 & -1 \end{pmatrix} \quad z = \begin{pmatrix} w \\ \theta \\ \eta \end{pmatrix}$$

Linear Programming Problem:

$$f(z_1, z_2, ..., z_n, z_{n+1}, z_{n+2}) = z_{n+2} \rightarrow max!$$

s.t. Az ≥ 0

calculated by e.g. Kamarkaralgorithm in **polynomial time**

If $z_{n+2} = \eta > 0$, then weights and threshold are given by z.

Otherwise separating hyperplane does not exist!