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Plan for Today 

  Introduction to ANN 

  McCulloch Pitts Neuron (MCP) 

  Minsky / Papert Perceptron (MPP) 
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Introduction to Artificial Neural Networks 

Biological Prototype 

●  Neuron 

-  Information gathering (D) 

-  Information processing    (C) 

-  Information propagation  (A / S) 

human being: 1012 neurons 

electricity in mV range 

speed: 120 m / s 

cell body (C) 

dendrite (D) nucleus 

axon (A) 

synapse (S) 
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Abstraction 

nucleus /  
cell body 

… 
dendrites 

axon 

synapse 

signal 
input 

signal 
processing 

signal 
output 

Introduction to Artificial Neural Networks 
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Model 

… 

x1 

f(x1, x2, …, xn) x2 

xn 

function f 

McCulloch-Pitts-Neuron 1943: 

xi ∈ { 0, 1 } =: B 

f: Bn → B 

Introduction to Artificial Neural Networks 
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1943: Warren McCulloch / Walter Pitts 

● description of neurological networks  
   → modell: McCulloch-Pitts-Neuron (MCP) 
  

● basic idea:  

- neuron is either active or inactive 

- skills result from connecting neurons 
 

● considered static networks 
   (i.e. connections had been constructed and not learnt) 

Introduction to Artificial Neural Networks 
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McCulloch-Pitts-Neuron 

n binary input signals x1, …, xn 

threshold θ > 0 

≥ 1 ... 

x1 

x2 

xn 

θ = 1 

boolean OR 

≥ n ... 

x1 

x2 

xn 

θ = n 

boolean AND 

⇒ can be realized: 

Introduction to Artificial Neural Networks 
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McCulloch-Pitts-Neuron 

n binary input signals x1, …, xn 

threshold θ > 0 

in addition: m binary inhibitory signals y1, …, ym 

● if at least one yj = 1, then output = 0 

● otherwise:  

- sum of inputs ≥ threshold, then output = 1  
                                            else  output = 0 

x1 

y1 

≥ 0 

NOT 

Introduction to Artificial Neural Networks 
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Theorem: 
Every logical function F: Bn → B can be simulated  
with a two-layered McCulloch/Pitts net. 

Assumption:  
inputs also available in inverted form, i.e. ∃ inverted inputs. 

Example: 
x1 
x2 
x3 
x1 
x2 
x3 

x1 
x4 

≥ 3 

≥ 3 

≥ 2 

≥ 1 

Introduction to Artificial Neural Networks 

⇒ x1 + x2 ≥ θ 

x1 

x2 

≥ θ 
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Proof:  (by construction) 

Every boolean function F can be transformed in disjunctive normal form 

⇒ 2 layers (AND - OR) 
 

1. Every clause gets a decoding neuron with θ = n 
⇒ output = 1 only if clause satisfied (AND gate) 

2. All outputs of decoding neurons  
are inputs of a neuron with θ = 1 (OR gate)  

q.e.d. 

Introduction to Artificial Neural Networks 
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Generalization: inputs with weights 

fires 1 if   0,2 x1 + 0,4 x2 + 0,3 x3 ≥ 0,7 
≥ 0,7 

0,2 

0,4 

0,3 

x1 

x2 

x3 

· 10 

     2 x1 +    4 x2 +    3 x3 ≥    7 
⇒

 

duplicate inputs! 

≥ 7 x2 

x3 

x1 

⇒ equivalent! 

Introduction to Artificial Neural Networks 
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Theorem: 

Weighted and unweighted MCP-nets are equivalent for weights ∈ Q+. 

Proof: 

„⇒“ N Let 

Multiplication with yields inequality with coefficients in N 

Duplicate input xi, such that we get ai b1 b2  bi-1 bi+1   bn  inputs. 

Threshold θ = a0 b1   bn 

„⇐“ 

Set all weights to 1. q.e.d. 

Introduction to Artificial Neural Networks 
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Introduction to Artificial Neural Networks 

+ feed-forward: able to compute any Boolean function 
 
+ recursive: able to simulate DFA 
 
− very similar to conventional logical circuits 
 
− difficult to construct 
 
− no good learning algorithm available 
 

Conclusion for MCP nets 
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Perceptron (Rosenblatt 1958) 

→ complex model → reduced by Minsky & Papert to what is „necessary“ 

→ Minsky-Papert perceptron (MPP), 1969    → essential difference: x ∈ [0,1] ⊂ R 

isolation of x2 yields: 
Y 

N 0 

1 

What can a single MPP do? 

Y 

N 0 

1 

Example: 

⇔ 
0 1 

1 

0 

Y 

N 

separating line 

separates R2 

in 2 classes 

Introduction to Artificial Neural Networks 
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OR NAND NOR 

= 0 = 1 

AND 

0 1 

1 

0 

XOR 

0 1 

1 

0 

? 

x1 x2 xor 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

⇒ 0   < θ 

⇒ w2 ≥ θ 

⇒ w1 ≥ θ 

⇒ w1 + w2 < θ 

w1, w2 ≥ θ > 0 

⇒ w1 + w2 ≥ 2θ 

contradiction! 
w1 x1 + w2 x2 ≥ θ 

Introduction to Artificial Neural Networks 

→ MPP at least as powerful as MCP neuron! 
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● book Perceptrons → analysis math. properties of perceptrons 
 

● disillusioning result: 
   perceptions fail to solve a number of trivial problems!  

- XOR Problem 

- Parity Problem 

- Connectivity Problem 
 

● “conclusion“: all artificial neurons have this kind of weakness! 
   ⇒ research in this field is a scientific dead end! 
 

● consequence: research funding for ANN cut down extremely (~ 15 years) 

1969: Marvin Minsky / Seymor Papert 

Introduction to Artificial Neural Networks 
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how to leave the „dead end“: 

1. Multilayer Perceptrons: 
 
 
 
 
 

x1 
x2 

2 

x1 
x2 

2 
1 ⇒ realizes XOR 

XOR 

0 1 

1 

0 

g(x1, x2) = 2x1 + 2x2 – 4x1x2 -1     with     θ = 0 

g(0,0) = –1 
g(0,1) = +1 
g(1,0) = +1 
g(1,1) = –1 

Introduction to Artificial Neural Networks 

2. Nonlinear separating functions: 
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How to obtain weights wi and threshold θ ? 

as yet: by construction 

x1 x2 NAND 

0 0 1 
0 1 1 
1 0 1 
1 1 0 

example: NAND-gate 

⇒ 0 ≥ θ 

⇒ w2 ≥ θ 

⇒ w1 ≥ θ 

⇒ w1 + w2 < θ 

requires solution of a system of  
linear inequalities (∈ P) 

(e.g.: w1 = w2 = -2, θ = -3) 

now:  by „learning“ / training 

Introduction to Artificial Neural Networks 



Lecture 10 

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20 
19 

Perceptron Learning 

Assumption: test examples with correct I/O behavior available 

Principle: 

(1) choose initial weights in arbitrary manner 

(2) feed in test pattern 

(3) if output of perceptron wrong, then change weights 

(4) goto (2) until correct output for all test paterns 

graphically: 

→ translation and rotation of separating lines 

Introduction to Artificial Neural Networks 
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Example 

threshold as a weight: w = (θ, w1, w2)‘ 

⇒
 

≥0 x2 

x1 

1 

w2 

w1 

-θ 

suppose initial vector of 
weights is 

w(0) = (1, -1, 1)‘ 

Introduction to Artificial Neural Networks 
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Perceptron Learning P: set of positive examples       → output 1 
N: set of negative examples   → output 0 

1. choose w0 at random, t = 0 

2. choose arbitrary x ∈ P ∪ N 

3. if x ∈ P and wt‘x > 0 then  goto 2 
if x ∈ N and wt‘x ≤ 0 then  goto 2 

4. if x ∈ P and wt‘x ≤ 0 then 
   wt+1 = wt + x; t++; goto 2 

5. if x ∈ N and wt‘x > 0 then 
   wt+1 = wt – x; t++; goto 2 

6. stop? If I/O correct for all examples! 

I/O correct! 

let w‘x > 0, should be ≤ 0!  
(w–x)‘x  =  w‘x – x‘x  <  w‘ x 

let w‘x ≤ 0, should be > 0!  
(w+x)‘x  =  w‘x + x‘x  >  w‘ x 

remark: algorithm converges, is finite, worst case: exponential runtime 

Introduction to Artificial Neural Networks 

threshold µ integrated in weights 



Lecture 10 

G. Rudolph: Computational Intelligence ▪ Winter Term 2019/20 
22 

Acceleration of Perceptron Learning 

If classification incorrect, then w‘x < 0. 

Consequently, size of error is just  δ = -w‘x > 0. 

⇒ wt+1 = wt + (δ + ε) x    for ε > 0 (small) corrects error in a single step, since 

≥ 0 > 0 

w‘t+1x = (wt + (δ + ε) x)‘ x 

 = w‘t x + (δ + ε) x‘x 

 =   -δ + δ ||x||2 + ε ||x||2 

 = δ (||x||2 – 1) + ε ||x||2 > 0         

Single-Layer Perceptron (SLP) 

Let B = P ∪ { -x : x ∈ N }                       (only positive examples) 

Assumption:   x ∈ { 0, 1 }n ⇒ ||x||                  ≥ 1 for all x ≠ (0, ..., 0)‘ 
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Generalization:   

⇒  ||x|| > 0  for all x ≠ (0, ..., 0)‘ 

as before:   wt+1 = wt + (δ + ε) x    for ε > 0 (small) and δ = - w‘t x > 0 

< 0 possible! > 0 

w‘t+1x = δ (||x||2 – 1) + ε ||x||2 ⇒ 

Idea:  Scaling of data does not alter classification task (if threshold 0)!  

Let  =  min { || x || : x ∈ B } > 0 

Set      x = ^ x ⇒ set of scaled examples  B ^ 

⇒ || x || ≥ 1 ⇒   || x ||2 – 1 ≥ 0     ⇒    w’t+1 x  > 0    ^ ^ ^ 

Single-Layer Perceptron (SLP) 

Assumption:   x ∈    n 
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There exist numerous variants of Perceptron Learning Methods. 

Theorem:  (Duda & Hart 1973) 

If rule for correcting weights is wt+1 = wt + γt x       (if w‘t x < 0) 

1. ∀ t ≥ 0 : γt ≥ 0 
 

2.   
 
 
 

3.  
 
  

then wt → w* for t → ∞ with ∀x: x‘w* > 0.   ■ 

e.g.: γt = γ > 0    or    γt = γ / (t+1)  for γ > 0 

Single-Layer Perceptron (SLP) 
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as yet: Online Learning 

→ Update of weights after each training pattern (if necessary) 

now:  Batch Learning 

→ Update of weights only after test of all training patterns 

wt+1 = wt + γ      x Σ 
w‘t x < 0 
x ∈ B 

→ Update rule: 

(γ > 0) 

vague assessment in literature: 

• advantage : „usually faster“ 

• disadvantage : „needs more memory“ just a single vector! 

Single-Layer Perceptron (SLP) 
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find weights by means of optimization  

Let F(w) = { x ∈ B :  w‘x < 0 } be the set of patterns incorrectly classified by weight w. 

Objective function: Σ f(w) = –      w‘x   → min!  
x ∈ F(w) 

Optimum:  f(w) = 0       iff F(w) is empty 

Possible approach: gradient method 

wt+1 = wt  – γ ∇f(wt) (γ > 0)  
converges to a local 
minimum (dep. on w0) 

Single-Layer Perceptron (SLP) 
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Gradient method 

wt+1 = wt  – γ ∇f(wt) 

Gradient 

Gradient points in direction of 
steepest ascent of function f(¢) 

Caution: 
Indices i of wi  
here denote 
components of 
vector w; they are 
not the iteration 
counters! 

Single-Layer Perceptron (SLP) 
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Gradient method 

gradient 

thus: 

gradient method ⇔ batch learning 

Single-Layer Perceptron (SLP) 
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How difficult is it  

(a) to find a separating hyperplane, provided it exists? 

(b) to decide, that there is no separating hyperplane? 

Let B = P ∪ { -x : x ∈ N }    (only positive examples), wi ∈ R ,  θ ∈ R , |B| = m 

For every example xi ∈ B should hold: 

xi1 w1 + xi2 w2 + ... + xin wn ≥ θ → trivial solution wi = θ = 0 to be excluded! 

Therefore additionally:  η ∈ R 
xi1 w1 + xi2 w2 + ... + xin wn – θ – η  ≥ 0 

Idea: η maximize → if η* > 0, then solution found 

Single-Layer Perceptron (SLP) 
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Matrix notation: 

Linear Programming Problem: 

f(z1, z2, ..., zn, zn+1, zn+2) = zn+2     →  max! 

s.t.    Az ≥ 0 

calculated by e.g. Kamarkar-
algorithm in polynomial time 

If zn+2 = η > 0, then weights and threshold are given by z. 

Otherwise separating hyperplane does not exist!  

Single-Layer Perceptron (SLP) 
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