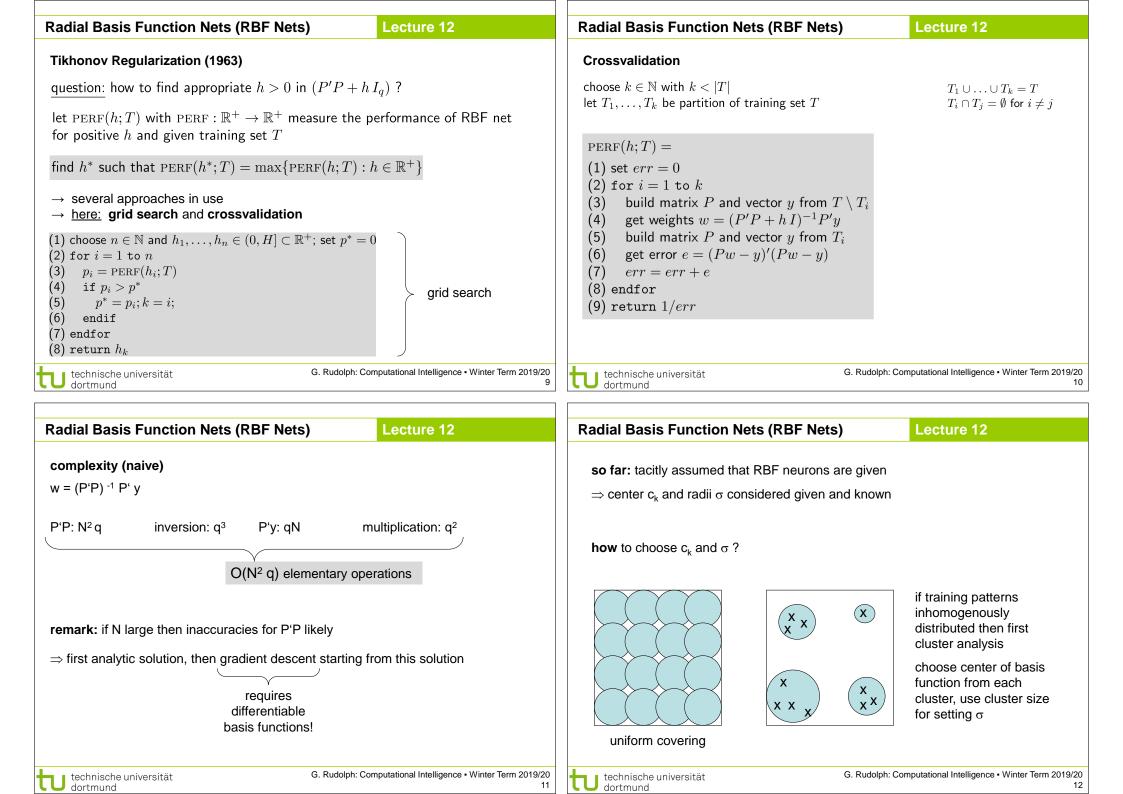


Radial Basis Function Nets (RBF Nets) Lecture 12		Radial Basis Function Nets (RBF Nets) Lecture 12
Tikhonov Regularization (1963)		Tikhonov Regularization (1963)
idea: choose $(P'P + h I_q)^{-1}$ instead of $(P'P)^{-1}$ ($h > 0$, I_q is q-dim. unit	t matrix)	$\Rightarrow (P'P + h I_q) \text{ is p.d.} \Rightarrow (P'P + h I_q)^{-1} \text{ exists}$
excursion to linear algebra:	,	<u>question:</u> how to justify this particular choice?
Def : matrix A positive semidefinite (p.s.d) iff $\forall x \in \mathbb{R}^n : x'Ax \ge 0$ Def : matrix A positive definite (p.d.) iff $\forall x \in \mathbb{R}^n \setminus \{0\} : x'Ax > 0$ Thm : matrix $A : n \times n$ regular \Leftrightarrow rank $(A) = n \Leftrightarrow A^{-1}$ exists $\Leftarrow A$ is p.d	l.	$\ Pw - y\ ^{2} + h \cdot \ w\ ^{2} \to \min_{w}!$ interpretation: minimize TSSE and prefer solutions with small values! $\frac{d}{dw}[(Pw - y)'(Pw - y) + h \cdot w'w] =$
$Lemma:a,b>0,A,B:n\times n,A \text{ p.d. and }B \text{ p.s.d.}\Rightarrow a\cdot A+b\cdot B \text{ p.d.}$		$\frac{dw}{dw}\left[\left(1^{'}w-y\right)\left(1^{'}w-y\right)+h^{'}w^{'}w\right] = \frac{d}{dw}\left[\left(w^{'}P^{'}Pw-w^{'}P^{'}y-y^{'}Pw+y^{'}y+h\cdot w^{'}w\right] =$
$Proof : \ \forall x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = \underbrace{a}_{>0} \cdot \underbrace{x'Ax}_{>0} + \underbrace{b}_{>0} \cdot \underbrace{x'Bx}_{\geq 0} > 0$	q.e.d.	$2P'Pw - 2P'y + 2hw = 2(P'P + hI_q)w - 2P'y \stackrel{!}{=} 0$
$Lemma : P : n \times q \Rightarrow P'P p.s.d.$		$\Rightarrow w^* = (P'P + h I_q)^{-1} P'y$
Proof : $\forall x \in \mathbb{R}^n : x'(P'P)x = (x'P') \cdot (Px) = (Px)'(Px) = Px _2^2 \ge 0$	q.e.d.	$\frac{d}{dw}[2(P'P+hI_q)w-2P'y] = 2(P'P+hI_q) \text{ is p.d.} \Rightarrow \text{minimum}$
G. Rudolph: Computational Intelligence • Winter T dortmund	Term 2019/20 7	technische universität G. Rudolph: Computational Intelligence • Winter Term 2019/20 dortmund 8



• additional training patterns \rightarrow only local adjustment of weights

regions not supported by RBF net can be identified by zero outputs

number of neurons increases exponentially with input dimension

• unable to extrapolate (since there are no centers and RBFs are local)

(if output close to zero, verify that output of each basis function is close to zero)

optimal weights determinable in polynomial time

advantages:

disadvantages:

Lecture 12

G. Rudolph: Computational Intelligence • Winter Term 2019/20

Radial Basis Function Nets (RBF Nets)

Lecture 12

Example: XOR via RBF

training data: (0,0), (1,1) with value -1 (0,1), (1,0) with value +1

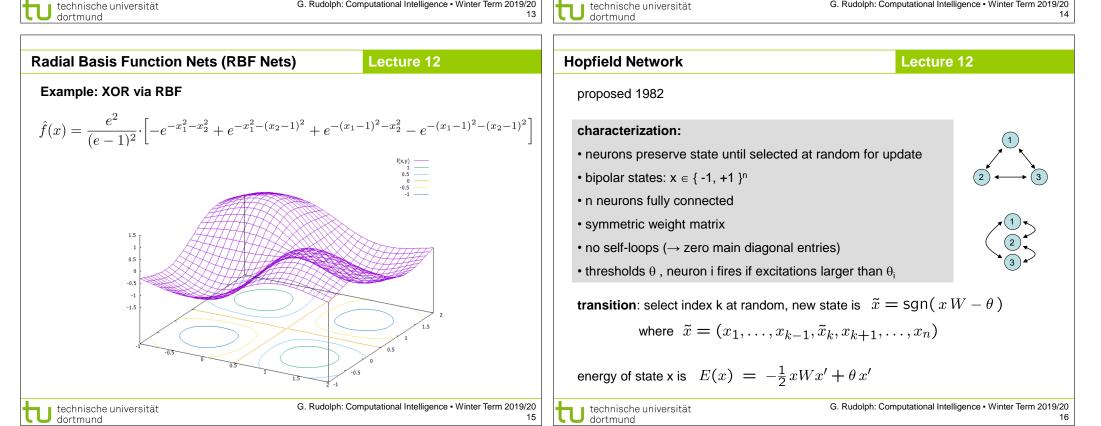
$$\varphi(r) = \exp\left(-\frac{1}{\sigma^2} r^2\right)$$

choose Gaussian kernel; set $\sigma = 1$; set centers c_i to training points

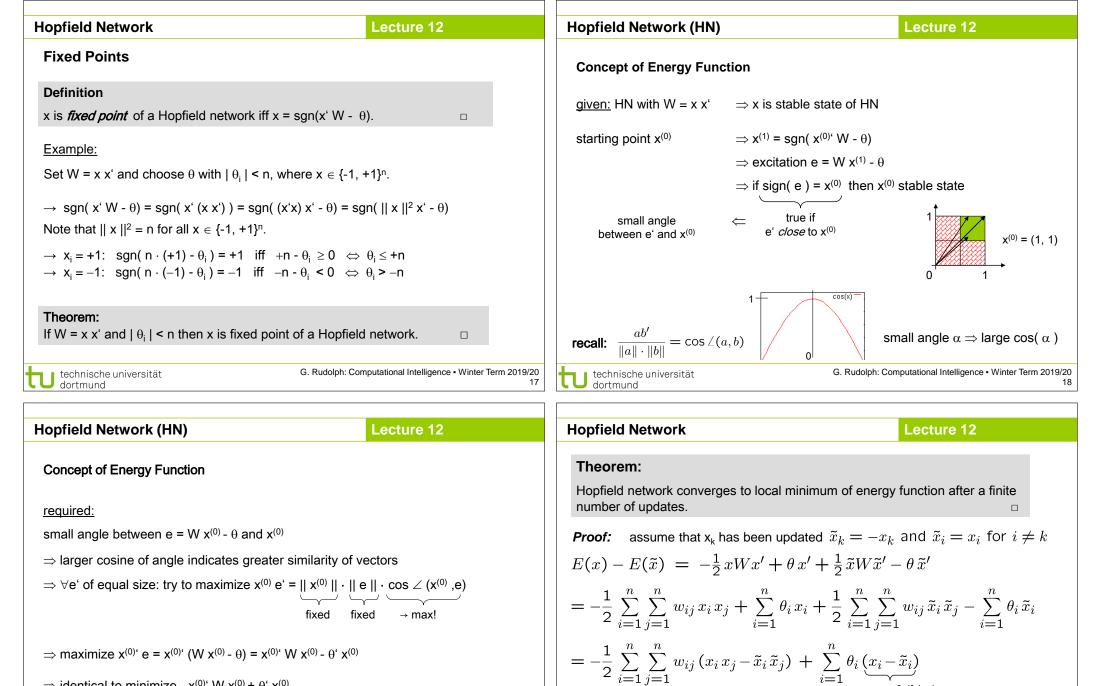
$$\begin{aligned} \hat{f}(x) &= w_1 \varphi(\|x - c_1\|) + w_2 \varphi(\|x - c_2\|) + w_3 \varphi(\|x - c_3\|) + w_4 \varphi(\|x - c_4\|) \\ \hat{f}(0, 0) &= w_1 + e^{-1} \cdot w_2 + e^{-1} \cdot w_3 + e^{-2} \cdot w_4 \stackrel{!}{=} -1 \\ \hat{f}(0, 1) &= e^{-1} \cdot w_1 + w_2 + e^{-2} \cdot w_3 + e^{-1} \cdot w_4 \stackrel{!}{=} 1 \\ \hat{f}(1, 0) &= e^{-1} \cdot w_1 + e^{-2} \cdot w_2 + w_3 + e^{-1} \cdot w_4 \stackrel{!}{=} 1 \\ \hat{f}(1, 1) &= e^{-2} \cdot w_1 + e^{-1} \cdot w_2 + e^{-1} \cdot w_3 + w_4 \stackrel{!}{=} -1 \end{aligned}$$

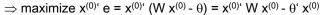
$$P = \begin{pmatrix} 1 & e^{-1} & e & e^{-2} \\ e^{-1} & 1 & e^{-2} & e^{-1} \\ e^{-1} & e^{-2} & 1 & e^{-1} \\ e^{-2} & e^{-1} & e^{-1} & 1 \end{pmatrix} y = \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix} w^* = P^{-1} y = \frac{e^2}{(e-1)^2} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix} \end{aligned}$$

G. Rudolph: Computational Intelligence • Winter Term 2019/20 14



13





 \Rightarrow identical to minimize $-x^{(0)}$, $W x^{(0)} + \theta^{(0)} x^{(0)}$

Definition

Energy function of HN at iteration t is $E(x^{(t)}) = -\frac{1}{2}x^{(t)}Wx^{(t)} + \theta^{t}x^{(0)}$

to technische universität dortmund

 $= -\frac{1}{2} \sum_{\substack{i=1\\i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) - \frac{1}{2} \sum_{j=1}^{n} w_{kj} (x_k x_j - \tilde{x}_k \tilde{x}_j) + \theta_k (x_k - \tilde{x}_k) \\ \underset{x_i}{\parallel} \quad 0 \text{ if } j = k \qquad \underset{x_j \text{ if } j \neq k}{\parallel}$

Hopfield Network	Lecture 12	Hopfield Network	Lecture 12
$ = -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} \sum_{j=1}^{n} w_{ij} x_i \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} \\ = -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} w_{ik} x_i (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{jk} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{j$		 ⇒ every update (change of state) decreases ⇒ since number of different bipolar vector update stops after finite #updates remark: dynamics of HN get stable in loc 	ors is finite
$= -\sum_{i=1}^{n} w_{ik} x_i (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$	(\tilde{x}_k)	\Rightarrow Hopfield network can be used to optin	nize combinatorial optimization problems!
$= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1 \\ \text{excitation } e_k}}^n w_{ik} x_i - \theta_k \right] $ $= -(x_k - \tilde{x}_k) \left[\sum_{\substack{i=1 \\ \text{excitation } e_k}}^n w_{ik} x_i - \theta_k \right]$	> 0 since: $ \frac{x_k x_k - \tilde{x}_k e_k - \theta_k \Delta E}{+1 > 0 \qquad < 0 \qquad > 0} \\ -1 < 0 \qquad > 0 \qquad > 0 $		
technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2019/2 2		G. Rudolph: Computational Intelligence • Winter Term 2019/20 22

Ho	pfie	I d I	Net	hwo	rk

Lecture 12

Application to Combinatorial Optimization

Idea:

- transform combinatorial optimization problem as objective function with $x \in \{-1,+1\}^n$
- · rearrange objective function to look like a Hopfield energy function
- extract weights W and thresholds $\boldsymbol{\theta}$ from this energy function
- initialize a Hopfield net with these parameters W and $\boldsymbol{\theta}$
- run the Hopfield net until reaching stable state (= local minimizer of energy function)
- · stable state is local minimizer of combinatorial optimization problem

Hopfield NetworkLecture 12Example I: Linear Functions $f(x) = \sum_{i=1}^{n} c_i x_i \rightarrow \min! \quad (x_i \in \{-1, +1\})$ Evidently: E(x) = f(x) with W = 0 and $\theta = c$ \downarrow Choose $x^{(0)} \in \{-1, +1\}^n$ set iteration counter t = 0repeatchoose index k at random $x_k^{(t+1)} = \operatorname{sgn}(x^{(t)} \cdot W_{\cdot,k} - \theta_k) = \operatorname{sgn}(x^{(t)} \cdot 0 - c_k) = -\operatorname{sgn}(c_k) = \begin{cases} -1 & \text{if } c_k > 0 \\ +1 & \text{if } c_k < 0 \end{cases}$ increment tuntil reaching fixed point \Rightarrow fixed point reached after $\Theta(n \log n)$ iterations on average

[proof: \rightarrow black board]

U technische universität dortmund

technische universität dortmund

Hopfield Network

Lecture 12

Example II: MAXCUT

<u>given:</u> graph with n nodes and symmetric weights ω_{ij} = ω_{ji} , ω_{ii} = 0, on edges

<u>task</u>: find a partition $V = (V_0, V_1)$ of the nodes such that the weighted sum of edges with one endpoint in V_0 and one endpoint in V_1 becomes maximal

<u>encoding</u>: $\forall i=1,...,n$: $y_i = 0$, node i in set V_0 ; $y_i = 1$, node i in set V_1

<u>objective function</u>: $f(y) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[y_i \left(1 - y_j \right) + y_j \left(1 - y_i \right) \right] \rightarrow \max!$

preparations for applying Hopfield network

step 1: conversion to minimization problem

step 2: transformation of variables

step 3: transformation to "Hopfield normal form"

step 4: extract coefficients as weights and thresholds of Hopfield net

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2019/20

25

dortmund

Hopfield Network

Lecture 12

26

step 1: conversion to minimization problem

$$\Rightarrow$$
 multiply function with -1 \Rightarrow E(y) = -f(y) \rightarrow min!

step 2: transformation of variables

$$\Rightarrow \mathbf{y}_{i} = (\mathbf{x}_{i}+1)/2$$

$$\Rightarrow f(x) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[\frac{x_{i}+1}{2} \left(1 - \frac{x_{j}+1}{2} \right) + \frac{x_{j}+1}{2} \left(1 - \frac{x_{i}+1}{2} \right) \right]$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[1 - x_{i} x_{j} \right]$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} - \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_{i} x_{j}$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} - \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_{i} x_{j}$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} - \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_{i} x_{j}$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} - \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_{i} x_{j}$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{j=i+1}^{n} \sum_{j=i+1}^{n} x_{j} x_{j}$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{j=i+1}^{n} x_{i} x_{j}$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_{i} x_{j}$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=i+1}^{n} x_{i} x_{j}$$

Hopfield NetworkLecture 12Example II: MAXCUT (continued)step 3: transformation to "Hopfield normal form" $E(x) = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j = -\frac{1}{2} \sum_{\substack{i=1 \ i \neq j}}^{n} \sum_{\substack{j=1 \ i \neq j}}^{n} \left(-\frac{1}{2} \omega_{ij}\right) x_i x_j$ $= -\frac{1}{2} x'Wx + \theta'x$ \downarrow 0'Step 4: extract coefficients as weights and thresholds of Hopfield net $w_{ij} = -\frac{\omega_{ij}}{2}$ for $i \neq j$, $w_{ii} = 0$, $\theta_i = 0$ remark: ω_{ij} : weights in graph — w_{ij} : weights in Hopfield net