

technische universität

dortmund

G. Rudolph: Computational Intelligence - Winter Ter	m 2019/20
	3

technische universität

dortmund

G. Rudolph: Computational Intelligence • Winter Term 2019/20

technische universität

dortmund

G. Rudolph: Computational Intelligence • Winter Term 2019/20

8

Lecture 13 Lecture 13 **Deep Neural Networks Deep Neural Networks** cost functions cost functions • regression . classification N training samples (x_i, y_i) where $y_i \in \{1, ..., C\}$, C = #classes N training samples (x_i, y_i) insist that $f(x_i; \theta) = y_i$ for i=1,..., N \rightarrow want to estimate probability of different outcomes if $f(x; \theta)$ linear in θ then $\theta^T x_i = y_i$ for i=1,..., N or $X \theta = y$ → decision rule: choose class with highest probability \Rightarrow best choice for θ : least square estimator (LSE) idea: use maximum likelihood estimator (MLE) \Rightarrow (X θ - y)^T (X θ - y) \rightarrow min! = estimate unknown parameter θ such that likelihood of sample $x_1, ..., x_N$ gets maximal as a function of θ in case of MLP: $f(x; \theta)$ is nonlinear in θ \Rightarrow best choice for θ : (nonlinear) least square estimator; aka TSSE likelihood function $\overline{L(\theta; x_1, \dots, x_N)} := f_{X_1, \dots, X_N}(x_1, \dots, x_N; \theta) = \prod_{i=1}^n f_X(x_i; \theta) \to \max_{\theta}!$ $\Rightarrow \sum_{i} (f(\mathbf{x}_{i}; \theta) - \mathbf{y}_{i})^{2} \rightarrow \min!$ G. Rudolph: Computational Intelligence • Winter Term 2019/20 G. Rudolph: Computational Intelligence • Winter Term 2019/20 technische universität dortmund technische universität dortmund

9

Deep Neural Networks Lecture 13 **here**: random variable $X \in \{1, ..., C\}$ with $P\{X = i\} = q_i$ (true, but unknown) \rightarrow we use relative frequencies of training set x₁, ..., x_N as estimator of q_i $\hat{q}_i = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{[x_j=i]} \Rightarrow \text{there are } N \cdot \hat{q}_i \text{ samples of class } i \text{ in training set}$ \Rightarrow the neural network should output \hat{p} as close as possible to \hat{q} ! likelihood $L(\hat{p}; x_1, \dots, x_N) = \prod_{k=1}^N P\{X_k = x_k\} = \prod_{i=1}^C \hat{p}_i^{N \cdot \hat{q}_i} \to \max!$ $\log L = \log \left(\prod_{i=1}^C \hat{p}_i^{N \cdot \hat{q}_i}\right) = \sum_{i=1}^C \log \hat{p}_i^{N \cdot \hat{q}_i} = N \underbrace{\sum_{i=1}^C \hat{q}_i \cdot \log \hat{p}_i}_{i} \to \max!$ \Rightarrow maximizing log L leads to same solution as minimizing **cross-entropy** $H(\hat{q}, \hat{p})$

Deep Neural Networks Lecture 13 in case of classification use softmax function $P\{y = j \mid x\} = \frac{e^{w_j^t x + b_j}}{\sum_{i=1}^{C} e^{w_i^T x + b_i}}$ in output layer

G. Rudolph: Computational Intelligence • Winter Term 2019/20 11

technische universität dortmund

10

Convolutional Neural Networks

Lecture 13

-2 -1

1

example

1

-2 1

most often used in graphical applications (2-D input; also possible: k-D tensors)

layer of CNN = 3 stages

- 1. convolution
- 2. nonlinear activation (e.g. ReLU)
- 3. pooling

1. Convolution

local filter / kernel K(i, j) applied to each cell of image I(x, y)

 $S(x,y) = (K*I)(x,y) = \sum_{i=-\delta}^{\delta} \sum_{j=-\delta}^{\delta} I(x-i,y-j) \cdot K(i,j)$

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2019/20 13

Convolutional Neural Networks Lecture 13 filter / kernel well known in image processing; typically hand-crafted!

here: values of filter matrix learnt in CNN !

actually: many filters active in CNN

1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

e.g. horizontal line detection

stride

= distance between two applications of a filter (horizontal s_{h} / vertical s_{v})

 \rightarrow leads to smaller images if s_h or s_v > 1

padding

- = treatment of border cells if filter does not fit in image
- "valid" : apply only to cells for which filter fits \rightarrow leads to smaller images
- "same": add rows/columns with zero cells; apply filter to all cells (\rightarrow same size) •

```
technische universität
dortmund
```

G. Rudolph: Computational Intelligence • Winter Term 2019/20 14

Convolutional Neural Networks	Lecture 13	Convolutional Neural Netw	vorks Lecture 13
2. nonlinear activation $a(x) = ReLU(x^T W + c)$		 CNN architecture: several consecutive convol flatten layer (→ converts k-D) fully connected MLP 	lution layers (also parallel streams); possibly dropouts matrix to 1-D matrix required for MLP input layer)
 3. pooling in principle: summarizing statistic of nearby outputs e.g. max-pooling m(i,j) = max(z(i+a, j+b) : a,b = -d, - also possible: mean, median, matrix norm, - can be used to reduce matrix / output dimensions 	, 0, d) for d > 0	examples: 2-D input layer convolution layer 1 convolution layer 2 t convolution layer k flatten layer MLP	2-D input layer convolution layer 1a convolution layer 1b flatten layer flatten layer MLP
technische universität G. Rudolph: Comp dortmund	utational Intelligence • Winter Term 2019/20 15	technische universität	G. Rudolph: Computational Intelligence • Winter Term 2019/2