

Computational Intelligence

Winter Term 2019/20

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Deep Neural Netwoks
 - Model
 - Training

- Convolutional Neural Netwoks
 - Model
 - Training

DNN = Neural Network with > 3 layers

we know: 3 layers in MLP sufficient to describe arbitrary sets

What can be achieved by more than 3 layers?

information stored in weights of edges of network

 \rightarrow more layers \rightarrow more neurons \rightarrow more edges \rightarrow more information storable

Which additional information storage is useful?

traditionally : handcrafted features fed into 3-layer perceptron modern viewpoint : let L-1 layers learn the feature map, last layer separates!

advantage: human expert need not design features manually for each application domain

Lecture 13

contra:

- danger: overfitting
 - \rightarrow need larger training set (expensive!)
 - \rightarrow optimization needs more time
- response landscape changes
 - \rightarrow more sigmoidal activiations
 - \rightarrow gradient vanishes
 - \rightarrow small progress in learning weights

countermeasures:

- regularization / dropout
 - \rightarrow data augmentation
 - \rightarrow parallel hardware (multi-core / GPU)
- not necessarily bad
 - \rightarrow change activation functions
 - \rightarrow gradient does not vanish
 - \rightarrow progress in learning weights

vanishing gradient:

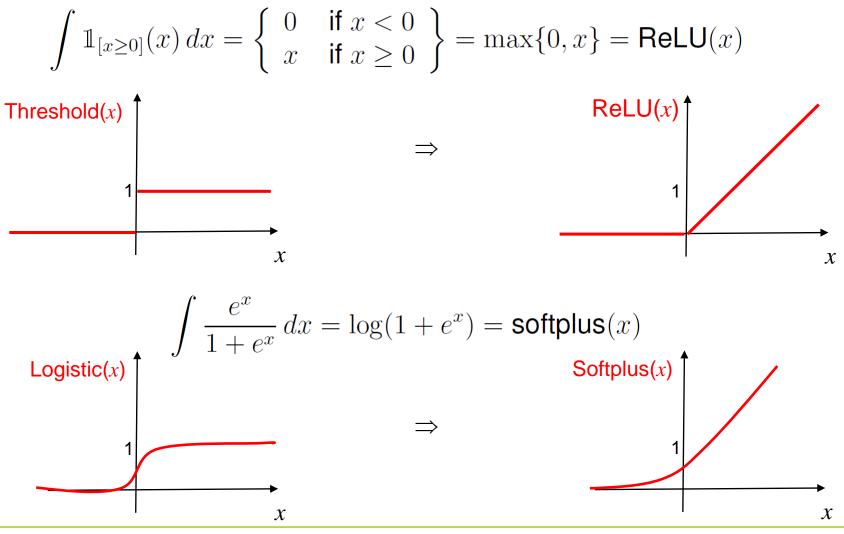
forward pass $y = f_3(f_2(f_1(x; w_1); w_2); w_3)$

backward pass

 $\begin{array}{ll} (f_3(f_2(f_1(x;w_1);w_2);w_3))`= \\ f_3`(f_2(f_1(x;w_1);w_2);w_3)\cdot f_2`(f_1(x;w_1);w_2)\cdot f_1`(x;w_1) & \textit{chain rule!} \end{array}$

 \rightarrow repeated multiplication of values in (0,1) \rightarrow 0

non-sigmoid activation functions



technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2019/20

Deep Neural Networks

dropout

- applied for regularization (against overfitting)
- can be interpreted as inexpensive approximation of bagging

aka: bootstrap aggregating, model averaging, ensemble methods

create k training sets by drawing with replacement train k models (with own exclusive training set) combine k outcomes from k models (e.g. majority voting)

- parts of network is effectively switched off
 e.g. multiplication of outputs with 0,
 e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5
- gradient descent on switching parts of network
 → artificial perturbation of greediness during gradient descent
- can reduce computational complexity if implemented sophistically

data augmentation

- \rightarrow extending training set by slightly perturbed true training examples
- best applicable if inputs are images: translate, rotate, noise, ...
- if x is real vector then adding e.g. small gaussian noise
 → here, utility disputable (actually needs sample from unseen subsets)

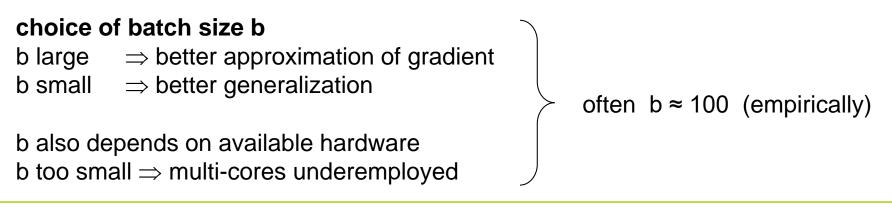
extra costs for acquiring additional annotated data are inevitable!

stochastic gradient descent

- partitioning of training set B into (mini-) batches of size b

traditionally: 2 extreme cases		now:
update of weights after each training example after all training examples 	b = 1 b = B	update of weights after b training examples where 1 < b < B

- search in subspaces \rightarrow counteracts greediness \rightarrow better generalization
- accelerates optimization methods (parallelism possible)



cost functions

• regression

N training samples (x_i, y_i) insist that $f(x_i; \theta) = y_i$ for i=1,..., Nif $f(x; \theta)$ linear in θ then $\theta^T x_i = y_i$ for i=1,..., N or $X \theta = y$ \Rightarrow best choice for θ : least square estimator (LSE) $\Rightarrow (X \theta - y)^T (X \theta - y) \rightarrow \min_{\theta}$

in case of MLP: $f(x; \theta)$ is <u>nonlinear</u> in θ

 \Rightarrow best choice for θ : (nonlinear) least square estimator; aka TSSE

$$\Rightarrow \sum_{i} (f(x_{i}; \theta) - y_{i})^{2} \rightarrow \min_{\theta}!$$

cost functions

• classification

N training samples (x_i, y_i) where $y_i \in \{ 1, ..., C \}$, C = #classes

- \rightarrow want to estimate probability of different outcomes
- \rightarrow decision rule: choose class with highest probability

idea: use maximum likelihood estimator (MLE)

= estimate unknown parameter θ such that likelihood of sample $x_1, ..., x_N$ gets maximal as a function of θ

 $\frac{\text{likelihood function}}{L(\theta; x_1, \dots, x_N)} := f_{X_1, \dots, X_N}(x_1, \dots, x_N; \theta) = \prod_{i=1}^N f_X(x_i; \theta) \to \max_{\theta}!$

here: random variable $X \in \{1, ..., C\}$ with P{ X = i } = q_i (true, but unknown)

 \rightarrow we use relative frequencies of training set $x_1, ..., x_N$ as estimator of q_i

$$\hat{q}_i = \frac{1}{N} \sum_{j=1}^N \mathbb{1}_{[x_j=i]} \implies \text{there are } N \cdot \hat{q}_i \text{ samples of class } i \text{ in training set}$$

 \Rightarrow the neural network should output \hat{p} as close as possible to \hat{q} !

likelihood
$$L(\hat{p}; x_1, \dots, x_N) = \prod_{k=1}^N P\{X_k = x_k\} = \prod_{i=1}^C \hat{p}_i^{N \cdot \hat{q}_i} \to \max!$$

$$\log L = \log \left(\prod_{i=1}^C \hat{p}_i^{N \cdot \hat{q}_i}\right) = \sum_{i=1}^C \log \hat{p}_i^{N \cdot \hat{q}_i} = N \underbrace{\sum_{i=1}^C \hat{q}_i \cdot \log \hat{p}_i}_{-H(\hat{q}, \hat{p})} \to \max!$$

 \Rightarrow maximizing $\log L$ leads to same solution as minimizing cross-entropy $H(\hat{q}, \hat{p})$

in case of *classification*

use softmax function
$$P\{y = j \mid x\} = \frac{e^{w_j^T x + b_j}}{\sum_{i=1}^C e^{w_i^T x + b_i}}$$
 in output layer

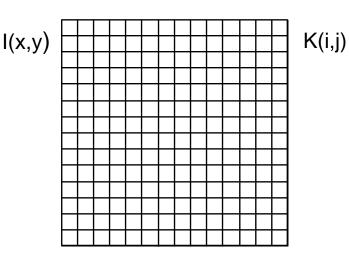
Convolutional Neural Networks

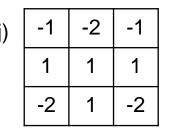
Lecture 13

most often used in graphical applications (2-D input; also possible: k-D tensors)

layer of CNN = 3 stages

- 1. convolution
- 2. nonlinear activation (e.g. ReLU)
- 3. pooling





1. Convolution

local filter / kernel K(i, j) applied to each cell of image I(x, y)

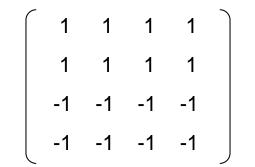
$$S(x,y) = (K*I)(x,y) = \sum_{i=-\delta}^{\delta} \sum_{j=-\delta}^{\delta} I(x-i,y-j) \cdot K(i,j)$$

filter / kernel

well known in image processing; typically hand-crafted!

here: values of filter matrix learnt in CNN !

actually: many filters active in CNN



Lecture 13

e.g. horizontal line detection

stride

- = distance between two applications of a filter (horizontal s_h / vertical s_v)
- \rightarrow leads to smaller images if s_h or s_v > 1

padding

- = treatment of border cells if filter does not fit in image
- "valid" : apply only to cells for which filter fits \rightarrow leads to smaller images
- "same": add rows/columns with zero cells; apply filter to all cells (→ same size)

2. nonlinear activation

 $a(x) = ReLU(x^T W + c)$

3. pooling

in principle: summarizing statistic of nearby outputs

e.g. **max-pooling** m(i,j) = max(z(i+a, j+b) : a,b = -d, ..., 0, ... d) for d > 0

- also possible: mean, median, matrix norm, ...

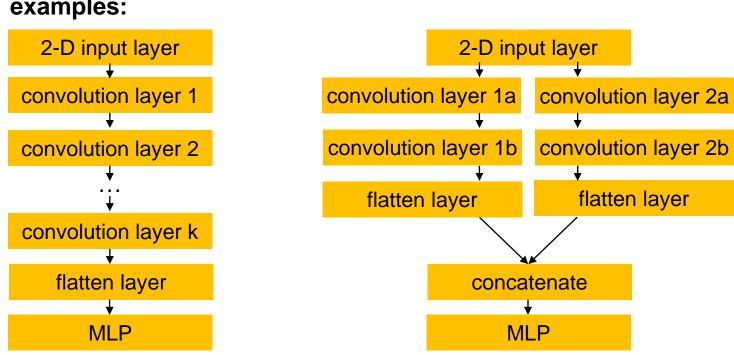
- can be used to reduce matrix / output dimensions

Convolutional Neural Networks

Lecture 13

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts
- flatten layer (\rightarrow converts k-D matrix to 1-D matrix required for MLP input layer)
- fully connected MLP



examples:

