

Computational Intelligence

Winter Term 2020/21

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Fuzzy Sets
 - Basic Definitions and Results for Standard Operations
 - Algebraic Difference between Fuzzy and Crisp Sets

Observation:

Communication between people is not precise but somehow fuzzy and vague.

"If the water is too hot then add a little bit of cold water."

Despite these shortcomings in human language we are able

- to process fuzzy / uncertain information and
- to accomplish complex tasks!

Goal:

Development of formal framework to process fuzzy statements in computer.

Consider the statement: "The water is hot."

Which temperature defines "hot"?

A single temperature $T = 95^{\circ} C$?

No! Rather, an interval of temperatures: T \in [70, 120] !

But who defines the limits of the intervals?

Some people regard temperatures > 60° C as hot, others already T > 50° C!

Idea: All people might agree that a temperature in the <u>set</u> [70, 120] defines a hot temperature!

If $T = 65^{\circ}C$ not all people regard this as hot. It does not belong to [70,120]. But it is hot to some <u>degree</u>. Or: $T = 65^{\circ}C$ belongs to set of hot temperatures to some <u>degree</u>!

$\Rightarrow \quad Can be the concept for capturing fuzziness! \quad \Rightarrow Formalize this concept!$

U technische universität dortmund G. Rudolph: Computational Intelligence - Winter Term 2020/21

A map F: X \rightarrow [0,1] $\subset \mathbb{R}$ that assigns its *degree of membership* F(x) to each x \in X is termed a **fuzzy set**.

Remark:

A fuzzy set F is actually a map F(x). Shorthand notation is simply F.

Same point of view possible for traditional ("*crisp*") sets:

$$A(x) := \mathbf{1}_{[x \in A]} := \mathbf{1}_A(x) := \begin{cases} \mathbf{1} & \text{, if } x \in A \\ \mathbf{0} & \text{, if } x \notin A \end{cases}$$

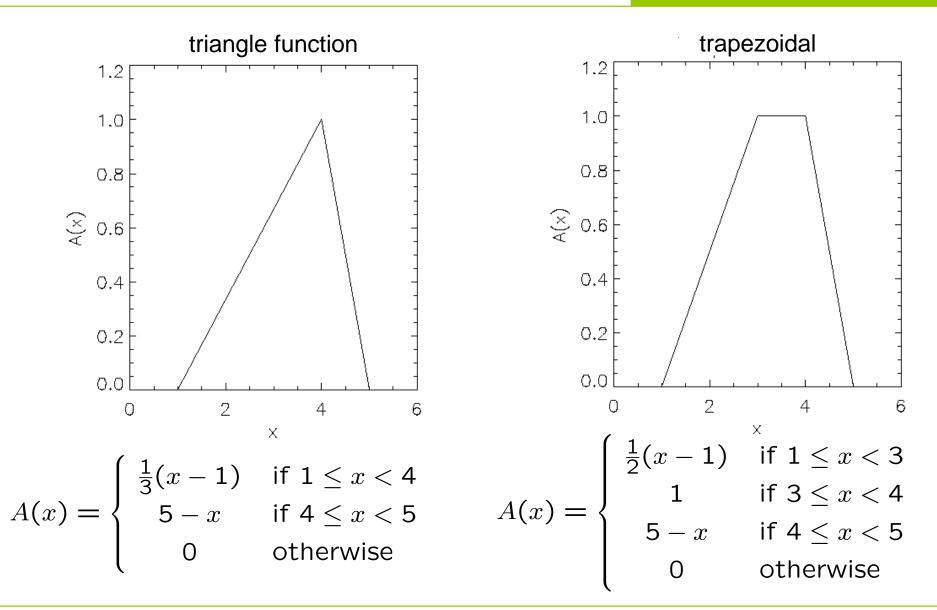
characteristic / indicator function of (crisp) set A

 \Rightarrow membership function interpreted as generalization of characteristic function

Fuzzy Sets: Membership Functions

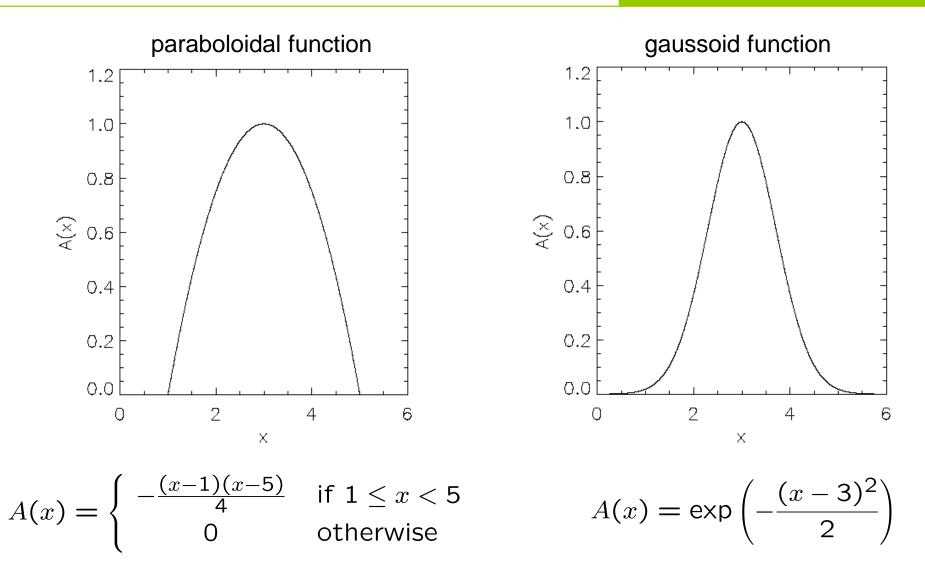
dortmund

Lecture 01



Fuzzy Sets: Membership Functions

Lecture 01



7

A fuzzy set F over the crisp set X is termed

- a) *empty* if F(x) = 0 for all $x \in X$,
- b) *universal* if F(x) = 1 for all $x \in X$.

Empty fuzzy set is denoted by \mathbb{O} . Universal set is denoted by \mathbb{U} .

Definition

Let A and B be fuzzy sets over the crisp set X.

- a) A and B are termed *equal*, denoted A = B, if A(x) = B(x) for all $x \in X$.
- b) A is a *subset* of B, denoted $A \subseteq B$, if $A(x) \le B(x)$ for all $x \in X$.
- c) A is a *strict subset* of B, denoted $A \subset B$, if $A \subseteq B$ and $\exists x \in X$: A(x) < B(x).

Remark: A strict subset is also called a *proper* subset.

Let A, B and C be fuzzy sets over the crisp set X. The following relations are valid:

- a) reflexivity $: A \subseteq A$.
- b) antisymmetry : $A \subseteq B$ and $B \subseteq A \implies A = B$.
- c) transitivity $: A \subseteq B \text{ and } B \subseteq C \implies A \subseteq C$.

Proof: (via reduction to definitions and exploiting operations on crisp sets) ad a) $\forall x \in X$: A(x) \leq A(x).

```
ad b) \forall x \in X: A(x) \leq B(x) and B(x) \leq A(x) \Rightarrow A(x) = B(x).
```

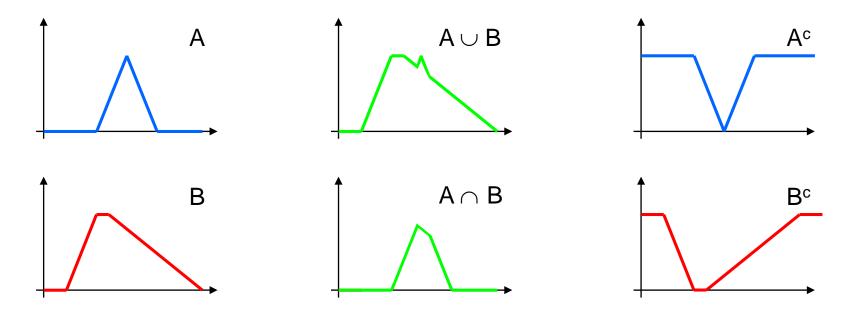
ad c) $\forall x \in X$: A(x) \leq B(x) and B(x) \leq C(x) \Rightarrow A(x) \leq C(x). q.e.d.

Remark: Same relations valid for crisp sets. No Surprise! Why?

9

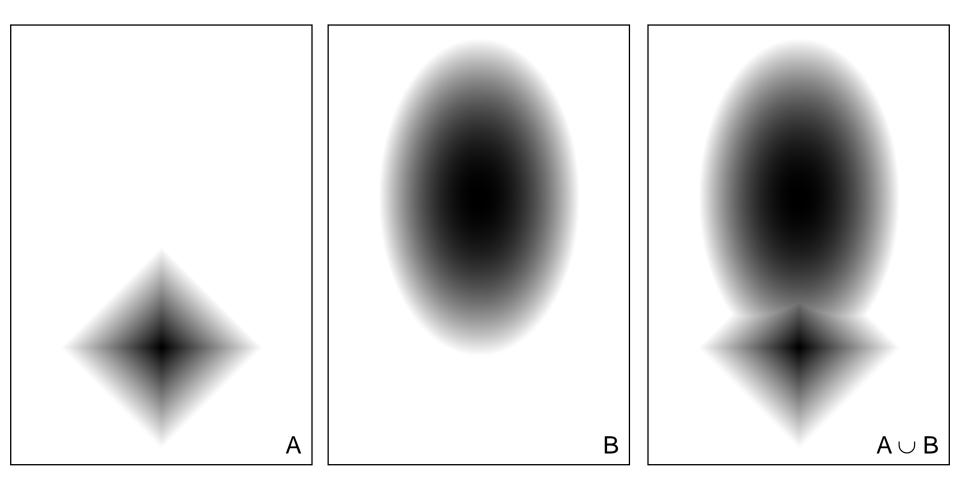
Let A and B be fuzzy sets over the crisp set X. The set C is the

- a) *union* of A and B, denoted C = A \cup B, if C(x) = max{ A(x), B(x) } for all x \in X;
- b) *intersection* of A and B, denoted $C = A \cap B$, if $C(x) = min\{A(x), B(x)\}$ for all $x \in X$;
- c) **complement** of A, denoted $C = A^c$, if C(x) = 1 A(x) for all $x \in X$.



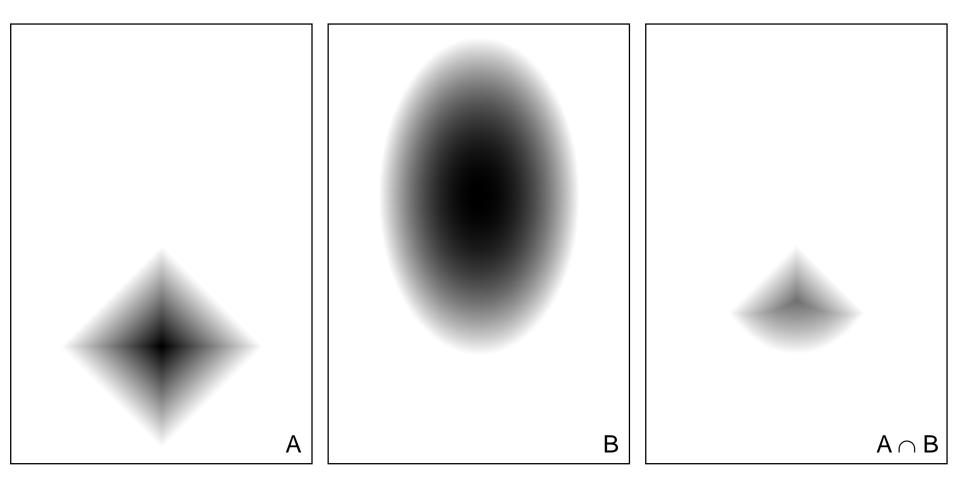
Lecture 01

standard fuzzy union



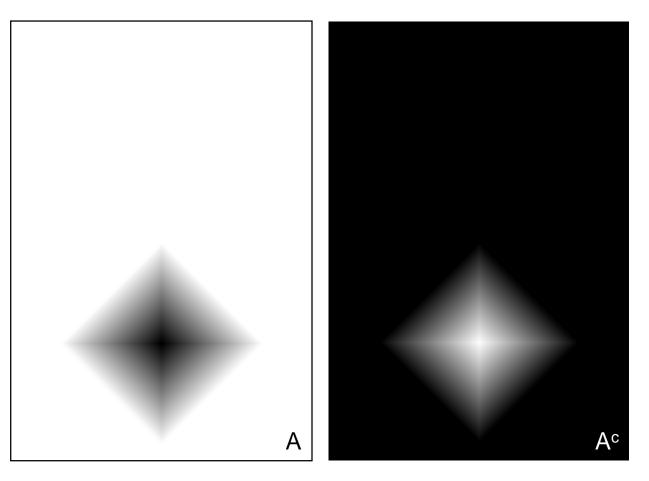
interpretation: membership = 0 is white, = 1 is black, in between is gray

standard fuzzy intersection



interpretation: membership = 0 is white, = 1 is black, in between is gray

standard fuzzy complement



interpretation: membership = 0 is white, = 1 is black, in between is gray

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2020/21

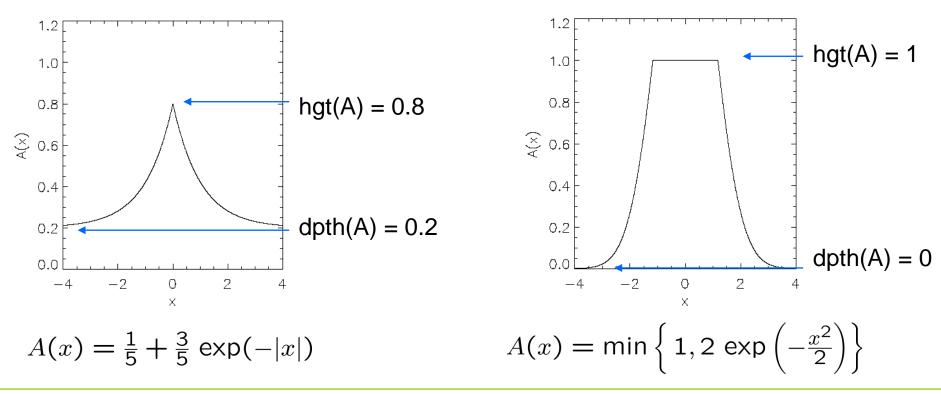
Fuzzy Sets: Basic Definitions

Definition

The fuzzy set A over the crisp set X has

a) *height* hgt(A) = sup{
$$A(x) : x \in X$$
 },

b) *depth* dpth(A) = inf {
$$A(x) : x \in X$$
 }.



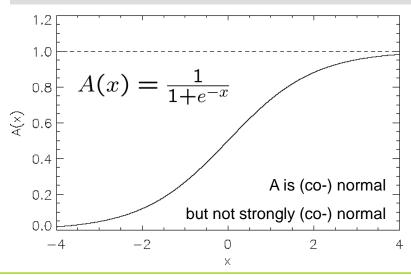
U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2020/21

Lecture 01

The fuzzy set A over the crisp set X is

- a) *normal* if hgt(A) = 1
- b) strongly normal if $\exists x \in X: A(x) = 1$
- c) **co-normal** if dpth(A) = 0
- d) strongly co-normal if $\exists x \in X$: A(x) = 0

e) subnormal



technische universität

dortmund

Remark:

How to normalize a non-normal fuzzy set A?

$$A^*(x) = \frac{A(x)}{\operatorname{hgt}(A)}$$

The *cardinality* card(A) of a fuzzy set A over the crisp set X is

$$\operatorname{card}(A) := \begin{cases} \sum_{x \in X} A(x) &, \text{ if } X \text{ countable} \\ \\ \int_{X} A(x) \, dx &, \text{ if } X \subseteq \mathbb{R}^{\mathsf{n}} \end{cases}$$

Examples:

a)
$$A(x) = q^x$$
 with $q \in (0,1), x \in N_0$ $\Rightarrow card(A) = \sum_{x \in X} A(x) = \sum_{x=0}^{\infty} q^x = \frac{1}{1-q} < \infty$
b) $A(x) = 1/x$ with $x \in N$ $\Rightarrow card(A) = \sum_{x \in X} A(x) = \sum_{x=1}^{\infty} \frac{1}{x} = \infty$
c) $A(x) = exp(-|x|)$ with $x \in \mathbb{R}$ $\Rightarrow card(A) = \int_{x \in X} A(x) dx = \int_{x=-\infty}^{\infty} exp(-|x|) dx = 2$

U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2020/21

 ∞

1

For fuzzy sets A, B and C over a crisp set X the standard union operation is

a)	commutative	$: A \cup B = B \cup A$
b)	associative	: A \cup (B \cup C) = (A \cup B) \cup C
C)	idempotent	: $A \cup A = A$
d)	monotone	$: A \subseteq B \implies (A \cup C) \subseteq (B \cup C).$

Proof: (via reduction to definitions)

ad a) $A \cup B = \max \{ A(x), B(x) \} = \max \{ B(x), A(x) \} = B \cup A.$

ad b) $A \cup (B \cup C) = \max \{ A(x), \max\{ B(x), C(x) \} \} = \max \{ A(x), B(x), C(x) \}$ = max { max { $A(x), B(x) \}, C(x) \} = (A \cup B) \cup C.$

ad c) $A \cup A = max \{ A(x), A(x) \} = A(x) = A$.

ad d) $A \cup C = \max \{ A(x), C(x) \} \le \max \{ B(x), C(x) \} = B \cup C \text{ since } A(x) \le B(x).$ **q.e.d.**

For fuzzy sets A, B and C over a crisp set X the standard intersection operation is

a)	commutative	: $A \cap B = B \cap A$
b)	associative	: A \cap (B \cap C) = (A \cap B) \cap C
c)	idempotent	: $A \cap A = A$
d)	monotone	$: A \subseteq B \implies (A \cap C) \subseteq (B \cap C).$

Proof: (analogous to proof for standard union operation)

For fuzzy sets A, B and C over a crisp set X there are the distributive laws

```
a) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
```

b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof: ad a) max { A(x), min { B(x), C(x) } } = $\begin{cases} max \{ A(x), B(x) \} & \text{if } B(x) \leq C(x) \\ max \{ A(x), C(x) \} & \text{otherwise} \end{cases}$

If $B(x) \leq C(x)$ then max { A(x), B(x) } $\leq \max \{ A(x), C(x) \}$.

Otherwise $\max \{ A(x), C(x) \} \le \max \{ A(x), B(x) \}.$

 \Rightarrow result is always the smaller max-expression

 \Rightarrow result is min { max { A(x), B(x) }, max { A(x), C(x) } } = (A \cup B) \cap (A \cup C).

ad b) analogous.

Fuzzy Sets: Basic Results

Lecture 01

Theorem

If A is a fuzzy set over a crisp set X then

a) $A \cup \mathbb{O} = A$

b) $A \cup \mathbb{U} = \mathbb{U}$

c) $A \cap \mathbb{O} = \mathbb{O}$

d) $A \cap \mathbb{U} = A$.

Proof:

(via reduction to definitions)

ad a) max { A(x), 0 } = A(x)

ad b) max { A(x), 1 } =
$$U(x) \equiv 1$$

ad c) min { A(x), 0 } =
$$\mathbb{O}(x) \equiv 0$$

Breakpoint:

So far we know that fuzzy sets with operations \cap and \cup are a <u>distributive lattice</u>. If we can show the validity of

- $(A^c)^c = A$
- $\bullet \: \mathsf{A} \cup \mathsf{A^c} = \mathbb{U}$
- $A \cap A^c = \mathbb{O}$ \Rightarrow Fuzzy Sets would be Boolean Algebra! Is it true ?

Fuzzy Sets: Basic Results

Theorem

If A is a fuzzy set over a crisp set X then

- a) $(A^{c})^{c} = A$
- b) $\frac{1}{2} \le (A \cup A^c)(x) < 1$ for $A(x) \in (0,1)$
- c) $0 < (A \cap A^c)(x) \le \frac{1}{2}$ for $A(x) \in (0,1)$

Proof:

dortmund

ad a)
$$\forall x \in X: 1 - (1 - A(x)) = A(x)$$
.

ad b) $\forall x \in X$: max { A(x), 1 - A(x) } = $\frac{1}{2}$ + | A(x) - $\frac{1}{2}$ | $\geq \frac{1}{2}$.

Value 1 only attainable for A(x) = 0 or A(x) = 1.

ad c) $\forall x \in X$: min { A(x), 1 - A(x) } = $\frac{1}{2}$ - | A(x) - $\frac{1}{2}$ | $\leq \frac{1}{2}$.

Value 0 only attainable for A(x) = 0 or A(x) = 1.

q.e.d.

Lecture 01

Remark:

Recall the identities

 $\min\{a,b\} = \frac{a+b-|a-b|}{2}$

$$\max\{a,b\} = \frac{a+b+|a-b|}{2}$$

Fuzzy Sets: Algebraic Structure

Conclusion:

Fuzzy sets with \cup and \cap are a distributive lattice.

But in general:

a) $A \cup A^c \neq \mathbb{U}$ b) $A \cap A^c \neq \mathbb{O}$ $\}$ \Rightarrow Fuzzy sets with \cup and \cap are **not** a Boolean algebra!

Remarks:

ad a) The law of excluded middle does not hold!

("Everything must either be or not be!")

ad b) The **law of noncontradiction** does not hold!

("Nothing can both be and not be!")

 \Rightarrow Nonvalidity of these laws generate the <u>desired</u> fuzziness!

but: Fuzzy sets still endowed with much algebraic structure (distributive lattice)!

If A and B are fuzzy sets over a crisp set X with standard union, intersection, and complement operations then **DeMorgan**'s laws are valid:

- a) $(A \cap B)^c = A^c \cup B^c$
- b) $(A \cup B)^c = A^c \cap B^c$

Proof: (via reduction to elementary identities)

ad a) $(A \cap B)^{c}(x) = 1 - \min \{A(x), B(x)\} = \max \{1 - A(x), 1 - B(x)\} = A^{c}(x) \cup B^{c}(x)$

ad b) $(A \cup B)^{c}(x) = 1 - \max \{ A(x), B(x) \} = \min \{ 1 - A(x), 1 - B(x) \} = A^{c}(x) \cap B^{c}(x)$

q.e.d.

Question: Why restricting result above to "standard" operations?Conjecture: Most likely there also exist "nonstandard" operations!

U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2020/21