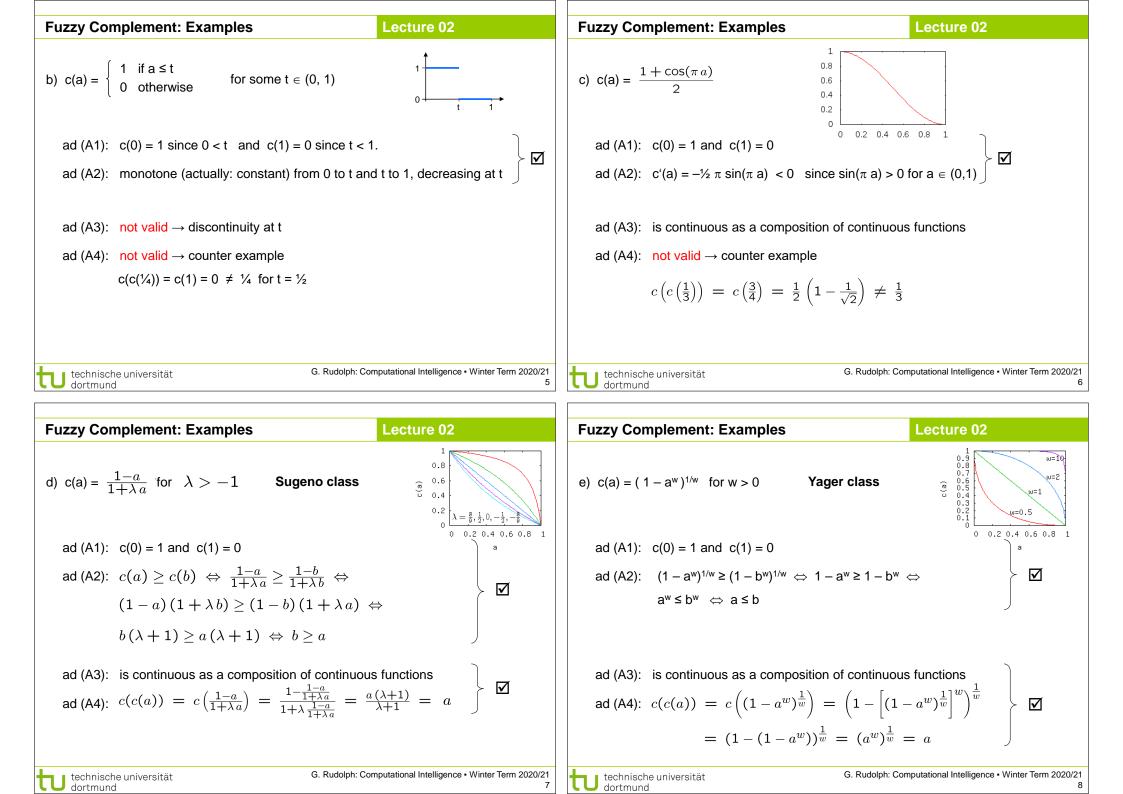
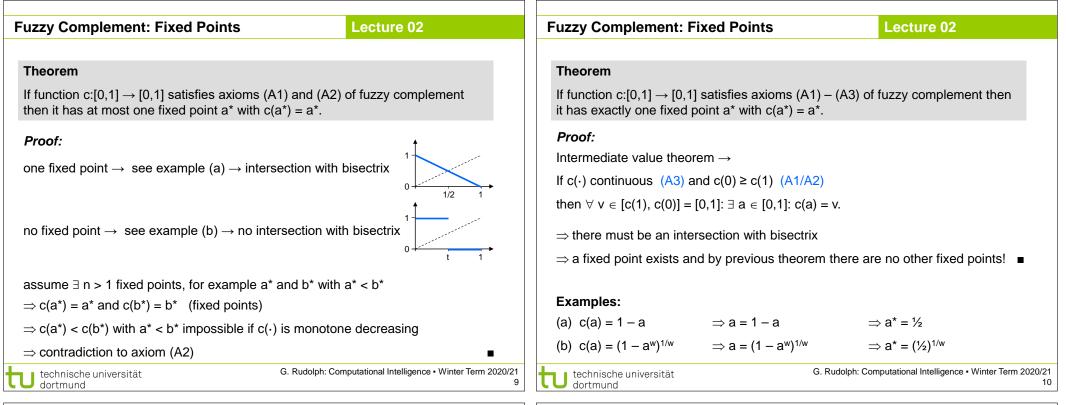
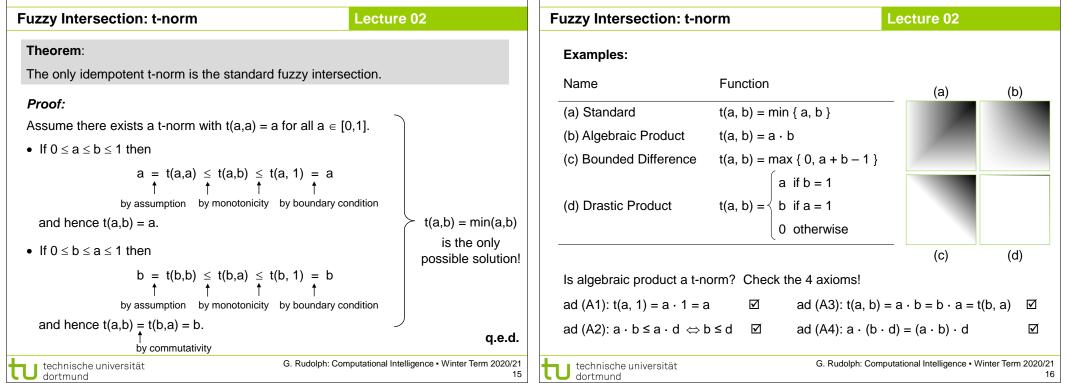
📲 👔 technische universität		Plan for	Today		Lecture 02
Computational Intelligence Winter Term 2020/21		 Fuzzy sets Axioms of fuzzy complement, t- and s-norms Generators Dual tripels 			
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund		tu techni dortm	sche universität und	G. Rudolph: Cor	nputational Intelligence • Winter Term 2020/2
Fuzzy Sets	Lecture 02	Fuzzy C	omplement: Axioms		Lecture 02
 Considered so far: Standard fuzzy operators A^c(x) = 1 - A(x) (A ∩ B)(x) = min { A(x), B(x) } (A ∪ B)(x) = max { A(x), B(x) } ⇒ Compatible with operators for crisp sets with membership functions with values in B = { 0, 1 ∃ Non-standard operators? ⇒ Yes! Innumerable man Defined via axioms. 		(A1) (A2) "nice to (A3) (A4) Examp a) star	on c: $[0,1] \rightarrow [0,1]$ is a <i>fuzzy c</i> c(0) = 1 and $c(1) = 0$. $\forall a, b \in [0,1]$: $a \le b \implies c(a)$ b have": $c(\cdot)$ is continuous. $\forall a \in [0,1]$: $c(c(a)) = a$	≥ c(b). 1 – a = 1 – 1 = 0	monotone decreasing involutive ad (A3): ⊠
 Creation via generators. 			A2): $c'(a) = -1 < 0$ (monotone)	-l	ad (A4): 1 − (1 − a) = a





Fuzzy Complement: 1 st Characterization	Lecture 02	Fuzzy Complement: 1 st Characterization Lecture 02
Theorem c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff \exists continuous function g: $[0,1] \rightarrow \mathbb{R}$ with • $g(0) = 0$ • strictly monotone increasing • $\forall a \in [0,1]$: $c(a) = g^{(-1)}(g(1) - g(a))$. Examples a) $g(x) = x \qquad \Rightarrow g^{-1}(x) = x \qquad \Rightarrow c(a) = 1 - a$ b) $g(x) = x^w \qquad \Rightarrow g^{-1}(x) = x^{1/w} \qquad \Rightarrow c(a) = (1 - a^w)^{1/w}$ c) $g(x) = \log(x+1) \Rightarrow g^{-1}(x) = e^x - 1 \qquad \Rightarrow c(a) = \exp(\log 1 - a^w)^{1/w}$	(2) – log(a+1)) – 1	Examples d) $g(a) = \frac{1}{\lambda} \log_e(1 + \lambda a) \text{ for } \lambda > -1$ $\cdot g(0) = \log_e(1) = 0$ $\cdot \text{ strictly monotone increasing since } g'(a) = \frac{1}{1 + \lambda a} > 0 \text{ for } a \in [0, 1]$ $\cdot \text{ inverse function on } [0,1] \text{ is } g^{-1}(a) = \frac{\exp(\lambda a) - 1}{\lambda} \text{, thus}$ $c(a) = g^{-1} \left(\frac{\log(1 + \lambda)}{\lambda} - \frac{\log(1 + \lambda a)}{\lambda} \right)$ $= \frac{\exp(\log(1 + \lambda) - \log(1 + \lambda a)) - 1}{\lambda}$ $= \frac{1}{\lambda} \left(\frac{1 + \lambda}{1 + \lambda a} - 1 \right) = \frac{1 - a}{1 + \lambda a} \text{ (Sugeno Complement)}$
$= \frac{1-a}{1+a}$	(Sugeno class. $\lambda = 1$)	G. Rudolph: Computational Intelligence • Winter Term 202

Fuzzy Complement: 2 nd Characterization	Lecture 02	Fuzzy Intersection: t-norm	Lecture 02
Theorem		Definition	
c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff	х.	A function t:[0,1] x [0,1] \rightarrow [0,1] is a <i>fuzzy inters</i>	section or <i>t-norm</i> iff $\forall a,b,d \in [0,1]$
\exists continuous function f: [0,1] $\rightarrow \mathbb{R}$ with		(A1) t(a, 1) = a	(boundary condition)
• f(1) = 0	defines a	(A2) $b \le d \Rightarrow t(a, b) \le t(a, d)$	(monotonicity)
strictly monotone decreasing	decreasing generator	(A3) $t(a,b) = t(b, a)$	(commutative)
• $\forall a \in [0,1]$: $c(a) = f^{(-1)}(f(0) - f(a))$.	f ⁽⁻¹⁾ (x) pseudo-inverse	(A4) $t(a, t(b, d)) = t(t(a, b), d)$	(associative) ■
Examples		"nice to have"	
a) $f(x) = k - k \cdot x$ (k > 0) $f^{(-1)}(x) = 1 - x/k$ $c(a) = 1 - \frac{k - (k - ka)}{k} = 1 - a$		(A5) t(a, b) is continuous	(continuity)
	ĸ	(A6) t(a, a) < a for 0 < a < 1	(subidempotent)
b) $f(x) = 1 - x^w$ $f^{(-1)}(x) = (1 - x)^{1/w}$ $c(a) = f^{-1}(a^w) = (1 - a^w)^{1/w}$ (Yager)		(A7) $a_1 < a_2$ and $b_1 \le b_2 \implies t(a_1, b_1) < t(a_2, b_2)$	(strict monotonicity)
		Note: the only idempotent t-norm is the standar	d fuzzy intersection
U technische universität G. Rudolph: C dortmund	computational Intelligence • Winter Term 2020/21 13	technische universität G. F dortmund	udolph: Computational Intelligence • Winter Term 202



Fuzzy Intersection: Characterization	Lecture 02	Fuzzy Union: s-norm	Lecture 02
Theorem		Definition	
Function t: [0,1] x [0,1] \rightarrow [0,1] is a t-norm ,		A function s:[0,1] x [0,1] \rightarrow [0,1] is a <i>fuzzy unio</i>	n or <i>s-norm</i> iff ∀a,b,d ∈ [0,1]
\exists decreasing generator f:[0,1] $\rightarrow \mathbb{R}$ with t(a, b) = f	¹ (min{ f(0), f(a) + f(b) }). ■	(A1) $s(a, 0) = a$	(boundary condition)
		(A2) $b \le d \Rightarrow s(a, b) \le s(a, d)$	(monotonicity)
Example:		(A3) $s(a, b) = s(b, a)$	(commutative)
f(x) = 1/x - 1 is decreasing generator since		(A4) s(a, s(b, d)) = s(s(a, b), d)	(associative)
f(x) is continuous			
• f(1) = 1/1 − 1 = 0		"nice to have"	
• $f'(x) = -1/x^2 < 0$ (monotone decreasing)		(A5) s(a, b) is continuous	(continuity)
inverse function is $f^{-1}(x) = \frac{1}{x+1}$; $f(0) = \infty \implies \min$	$\min(f(0), f(0), f(0)) = f(0) + f(0)$	(A6) $s(a, a) > a$ for $0 < a < 1$	(superidempotent)
	f(0), f(a) + f(b) = f(a) + f(b)	(A7) $a_1 < a_2$ and $b_1 \le b_2 \implies s(a_1, b_1) < s(a_2, b_2)$) (strict monotonicity)
\Rightarrow t(a, b) = $f^{-1}\left(\frac{1}{a} + \frac{1}{b} - 2\right) = \frac{1}{\frac{1}{a} + \frac{1}{b} - 2}$	$\frac{ab}{1} = \frac{ab}{a+b-ab}$	Note: the only idempotent s-norm is the standar	d fuzzy union
U technische universität G. Rudo dortmund	ph: Computational Intelligence • Winter Term 2020/21 17	technische universität G. R dortmund	udolph: Computational Intelligence • Winter Term 2020

Fuzzy Union: s-norr	n	Lecture 02	
Examples:			
Name	Function	(a)	(b)
Standard	s(a, b) = max { a, b }		
Algebraic Sum	$s(a, b) = a + b - a \cdot b$		
Bounded Sum	s(a, b) = min { 1, a + b }		
	$s(a, b) = \begin{cases} a & \text{if } b = 0 \\ b & \text{if } a = 0 \\ 1 & \text{otherwise} \end{cases}$		
Drastic Union	s(a, b) = b if $a = 0$		
	1 otherwise		
		(c)	(d)
Is algebraic sum a t-r	norm? Check the 4 axioms!		
ad (A1): s(a, 0) = a +	$0 - a \cdot 0 = a \boxdot$		ad (A3): 🗹
ad (A2): a + b − a · b	≤ a + d – a · d ⇔ b (1 – a) ≤ d (1	-a)⇔b≤d ⊠	ad (A4): 🗹
U technische universität dortmund	G. Rudolph: Co	omputational Intelligence •	Winter Term 2020/21 19

Fuzzy Union: Characterization	on	Lecture 02
Theorem		
Function s: $[0,1] \times [0,1] \rightarrow [0,1]$	is a s-norm ⇔	
∃ increasing generator g:[0,1] →	$\Rightarrow \mathbb{R}$ with $s(a, b) = g^{-1}(m)$	nin{ g(1), g(a) + g(b) }). ∎
Example:		
g(x) = -log(1 - x) is increasing g	generator since	
• g(x) is continuous		
• $g(0) = -log(1 - 0) = 0$	\checkmark	
• $g'(x) = 1/(1 - x) > 0$ (monotone)	e increasing) 🗹	
inverse function is $g^{-1}(x) = 1 - e^{-1}$	$xp(-x); g(1) = \infty \implies mir$	n{g(1), g(a) + g(b)} = g(a) + g(b)
\Rightarrow s(a, b) = $g^{-1}(-\log(1-\log(1-\log(1-\log(1-\log(1-\log(1-\log(1-\log(1-\log(1-\log($	$a) - \log(1-b))$	
$= 1 - \exp(\log(1 - $		
= 1 - (1 - a) (1 - a)	-b) = a + b - a b	(algebraic sum)
U technische universität dortmund	G. Rudolph: Co	mputational Intelligence • Winter Term 2020/21 20

Background from clas	ssical set theory:				Dual Triple:
\cap and \cup operations are	e dual w.r.t. complement s	ince they obey DeMorgan's la	IWS		- bounded difference
					- bounded sum
Definition		Definition			- standard complement
	nd s-norm s(⋅, ⋅) is said to e <i>fuzzy complement</i> c(⋅)				
-		iff of fuzzy complement s- and t-norm.	С(•),		\Rightarrow left image = right ima
• $c(t(a, b)) = s(c(a), c(a))$	c(b))	If t and s are dual to o			
• c(s(a, b)) = t(c(a), c	c(b))	then the tripel (c,s, t)		s(c(a), c(b))	
for all a, $b \in [0,1]$.		■ called a <i>dual tripel</i> .			Non-Dual Triple:
					- algebraic product
Examples of dual tripe	els				- bounded sum
t-norm	s-norm	complement			- standard complement
min { a, b }	max { a, b }	1 – a			
a⋅b	a+b-a·b	1 – a			\Rightarrow left image \neq right image
max { 0, a + b – 1 }	min { 1, a + b }	1 – a			
technische universität	G. R	dolph: Computational Intelligence • Winter Te	erm 2020/21	G. Rudolph:	Computational Intelligence • Winter Term

Dual Triples vs. Non-Dual Triples

Lecture 02

Why are dual triples so important?

 \Rightarrow allow equivalence transformations of fuzzy set expressions

 \Rightarrow required to transform into some equivalent normal form (standardized input)

 \Rightarrow e.g. two stages: intersection of unions

$$\bigcap_{i=1}^{n} (A_i \cup B_i)$$
$$\bigcup_{i=1}^{n} (A_i \cap B_i)$$

n

or union of intersections

 $A \cup (B \cap (C \cap D)^c) =$ $A \cup (B \cap (C^c \cup D^c)) =$

 $A \cup (B \cap C^c) \cup (B \cap D^c)$

U technische universität dortmund *i*=1 ← not in normal form ← equivalent if DeMorgan's law valid (dual triples!) ← equivalent (distributive lattice!) G. Rudolph: Computational Intelligence • Winter Term 2020/21 23