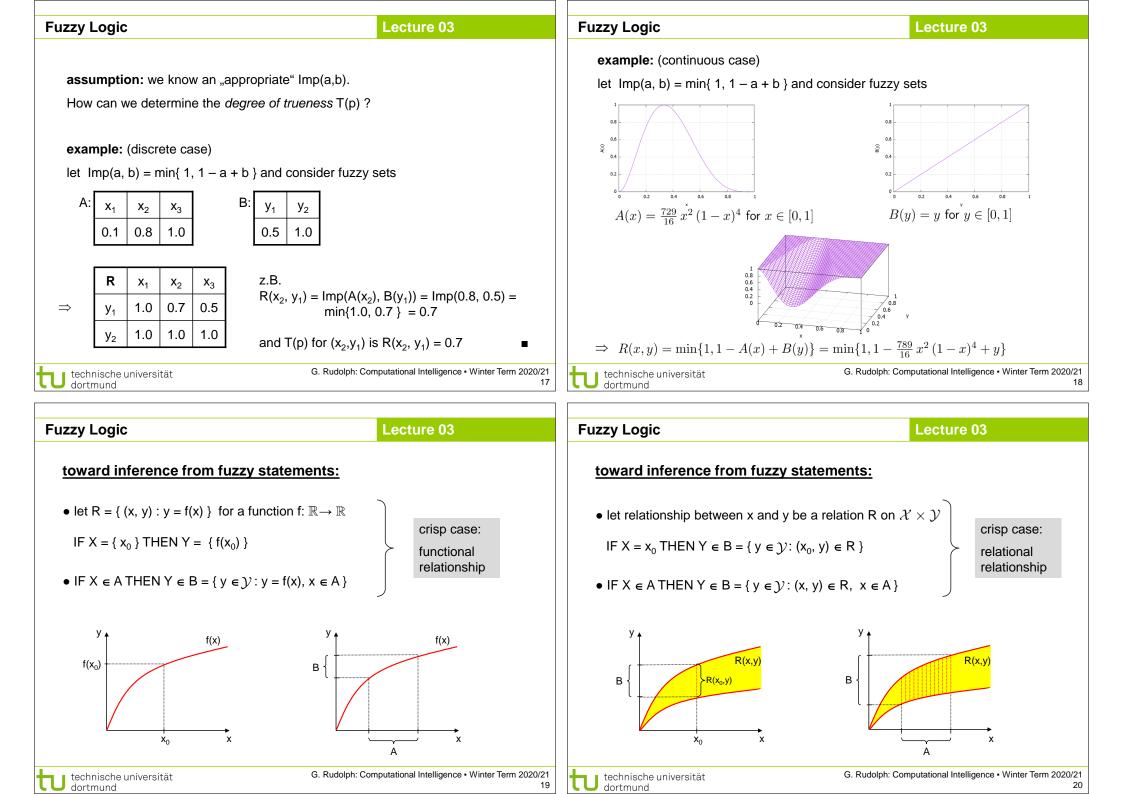
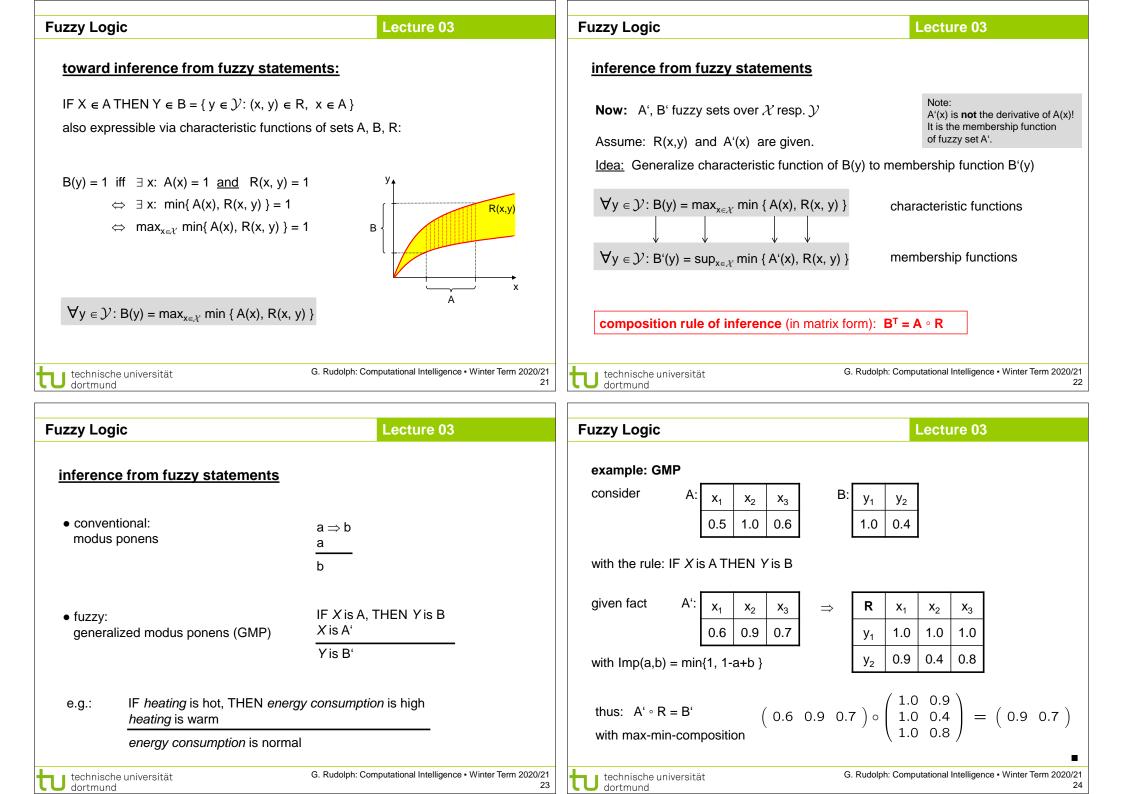

 Fuzzy relations Fuzzy logic Linguistic variables and Inference from fuzzy state technische universität dortmund 	atements	Computational Inte	telligence • Winter Term 2020/
	G. Rudolph:	Computational Inte	elligence • Winter Term 2020/
zzy Relations		Lecture	e 03
efinition xzy relation = fuzzy set over crision = fuzzy set over cri	ee of membership s		$_2 \times \ldots \times \mathcal{X}_n$
appropriate representation: n-dimensional <u>membership matrix</u> example : Let X = { New York, Paris } and Y = { Bejing, New York, Dortmund }.			
ample: Let X = { New York, Paris		1.0 0.0	Paris 0.9 0.7 0.3
	example : Let X = { New York, Paris relation R = "very far away"		relation R = "very far away" membership matrix

Fuzzy Relations	Lecture 03	Fuzzy Relations	Lecture 03	
Definition		Theorem		
Let $R(X, Y)$ be a fuzzy relation with membership matrix R . The <i>inverse fuzzy relation</i> to $R(X,Y)$, denoted $R^{-1}(Y, X)$, is a relation on $Y \times X$ with membership matrix R^{t} .			tion on relations is associative.	
		, , , , ,	ion on relations is not commutative.	
Remark: R' is the transpose of membership matrix	R.	c) (P(X,Y) • Q(Y,Z)) ⁻	$P^{-1} = Q^{-1}(Z, Y) \circ P^{-1}(Y, X).$	
Evidently: $(R^{-1})^{-1} = R$ since $(R^{i})^{i} = R$		membership matrix of max-min composition determinable via "fuzzy matrix multiplication": $R = P \circ Q$		
Definition				
Let P(X, Y) and Q(Y, Z) be fuzzy relations. The operation \circ on two relations, denoted P(X, Y) \circ Q(Y, Z), is termed <i>max-min-composition</i> iff		fuzzy matrix multiplication $r_{ij} = \max_k \min\{p_{ik}, q_{kj}\}$ crisp matrix multiplication $r_{ij} = \sum_k p_{ik} \cdot q_{kj}$		
$R(x,z)=(P\circQ)(x,z)=\max_{y\inY}\min_{y\inY}M(x,z)$	{ P(x, y), Q(y, z) }. ■	crisp matrix multip	plication $r_{ij} = \sum_{k} p_{ik} \cdot q_{kj}$	
U dortmund	Lecture 03	technische universität dortmund		
U dortmund		Fuzzy Relations	G. Rudolph: Computational Intelligence • Winter Term 2020/ Lecture 03	
	Lecture 03	Fuzzy Relations Binary fuzzy relations	Lecture 03	
Fuzzy Relations	Lecture 03	Fuzzy Relations Binary fuzzy relations • reflexive	Lecture 03 s on X x X : properties $\Leftrightarrow \forall x \in X : R(x,x) = 1$	
Fuzzy Relations further methods for realizing compositions of relati max-prod composition	Lecture 03	Fuzzy Relations Binary fuzzy relations • reflexive • irreflexive	Lecture 03 s on X x X : properties $\Leftrightarrow \forall x \in X : R(x,x) = 1$ $\Leftrightarrow \exists x \in X : R(x,x) < 1$	
Fuzzy Relations	Lecture 03	Fuzzy Relations Fuzzy Relations Binary fuzzy relations • reflexive • irreflexive • antireflexive	Lecture 03 s on X x X : properties $\Leftrightarrow \forall x \in X : R(x,x) = 1$ $\Leftrightarrow \exists x \in X : R(x,x) < 1$ $\Leftrightarrow \forall x \in X : R(x,x) < 1$	
Fuzzy Relations further methods for realizing compositions of relati max-prod composition	Lecture 03	Fuzzy Relations Fuzzy Relations Binary fuzzy relations • reflexive • irreflexive • antireflexive • symmetric	Lecture 03 s on X x X : properties $\Leftrightarrow \forall x \in X : R(x,x) = 1$ $\Leftrightarrow \exists x \in X : R(x,x) < 1$ $\Leftrightarrow \forall x \in X : R(x,x) < 1$ $\Leftrightarrow \forall (x,y) \in X \times X : R(x,y) = R(y,x)$	
Fuzzy Relations further methods for realizing compositions of relati max-prod composition	Lecture 03	Fuzzy Relations Binary fuzzy relations • reflexive • irreflexive • antireflexive • symmetric • asymmetric	Lecture 03 s on X x X : properties $\Leftrightarrow \forall x \in X : R(x,x) = 1$ $\Leftrightarrow \exists x \in X : R(x,x) < 1$ $\Leftrightarrow \forall x \in X : R(x,x) < 1$ $\Leftrightarrow \forall x \in X : R(x,x) < 1$ $\Leftrightarrow \forall (x,y) \in X \times X : R(x,y) = R(y,x)$ $\Leftrightarrow \exists (x,y) \in X \times X : R(x,y) \neq R(y,x)$	
Fuzzy Relations further methods for realizing compositions of relations max-prod composition $(P \odot Q)(x, z) = \max_{y \in \mathcal{Y}} \{P(x, y) \cdot Q(y, z)\}$ generalization: sup-t composition	Lecture 03	Fuzzy Relations Fuzzy Relations Binary fuzzy relations • reflexive • irreflexive • antireflexive • symmetric	Lecture 03 s on X x X : properties $\Rightarrow \forall x \in X : R(x,x) = 1$ $\Rightarrow \exists x \in X : R(x,x) < 1$ $\Rightarrow \forall x \in X : R(x,x) < 1$ $\Rightarrow \forall x \in X : R(x,x) < 1$ $\Rightarrow \forall (x,y) \in X x X : R(x,y) = R(y,x)$ $\Rightarrow \exists (x,y) \in X x X : R(x,y) \neq R(y,x)$ $\Rightarrow \forall (x,y) \in X x X : R(x,y) \neq R(y,x)$	
Fuzzy Relations further methods for realizing compositions of relations max-prod composition $(P \odot Q)(x, z) = \max_{y \in \mathcal{Y}} \{P(x, y) \cdot Q(y, z)\}$ generalization: sup-t composition	Lecture 03	Fuzzy Relations Binary fuzzy relations • reflexive • irreflexive • antireflexive • symmetric • asymmetric	Lecture 03 s on X x X : properties $\Rightarrow \forall x \in X : R(x,x) = 1$ $\Rightarrow \exists x \in X : R(x,x) < 1$ $\Rightarrow \forall x \in X : R(x,x) < 1$ $\Rightarrow \forall (x,y) \in X x X : R(x,y) = R(y,x)$ $\Rightarrow \exists (x,y) \in X x X : R(x,y) \neq R(y,x)$ $\Rightarrow \forall (x,y) \in X x X : R(x,y) \neq R(y,x)$ $\Rightarrow \forall (x,z) \in X x X : R(x,z) \ge \max_{y \in X} \min \{ R(x,y), R(y,z) \}$	
Fuzzy Relations further methods for realizing compositions of relations max-prod composition $(P \odot Q)(x, z) = \max_{y \in \mathcal{Y}} \{P(x, y) \cdot Q(y, z)\}$ <u>generalization:</u> sup-t composition $(P \circ Q)(x, z) = \sup_{y \in \mathcal{Y}} \{t(P(x, y), Q(y, z))\},$	tecture 03 ons: where t(.,.) is a t-norm	Fuzzy Relations Fuzzy Relations Binary fuzzy relations • reflexive • irreflexive • antireflexive • symmetric • asymmetric • antisymmetric	Lecture 03 s on X x X : properties $\Rightarrow \forall x \in X : R(x,x) = 1$ $\Rightarrow \exists x \in X : R(x,x) < 1$ $\Rightarrow \forall x \in X : R(x,x) < 1$ $\Rightarrow \forall (x,y) \in X x X : R(x,y) = R(y,x)$ $\Rightarrow \exists (x,y) \in X x X : R(x,y) \neq R(y,x)$ $\Rightarrow \forall (x,y) \in X x X : R(x,y) \neq R(y,x)$ $\Rightarrow \forall (x,z) \in X x X : R(x,z) \ge \max_{y \in X} \min \{ R(x,y), R(y,z) \}$	
Fuzzy Relations further methods for realizing compositions of relations max-prod composition $(P \odot Q)(x, z) = \max_{y \in \mathcal{Y}} \{P(x, y) \cdot Q(y, z)\}$ generalization: sup-t composition	vhere t(.,.) is a t-norm	Fuzzy Relations Fuzzy Relations Binary fuzzy relations • reflexive • irreflexive • antireflexive • symmetric • asymmetric • antisymmetric • transitive	Lecture 03 s on X x X : properties $\Rightarrow \forall x \in X : R(x,x) = 1$ $\Rightarrow \exists x \in X : R(x,x) < 1$ $\Rightarrow \forall x \in X : R(x,x) < 1$ $\Rightarrow \forall x \in X : R(x,x) < 1$ $\Rightarrow \forall (x,y) \in X x X : R(x,y) = R(y,x)$ $\Rightarrow \exists (x,y) \in X x X : R(x,y) \neq R(y,x)$ $\Rightarrow \forall (x,y) \in X x X : R(x,y) \neq R(y,x)$ $\Rightarrow \forall (x,z) \in X x X : R(x,z) \ge \max \min \{ R(x,y), R(y,z) \}$	
Fuzzy Relations Fuzzy Relations further methods for realizing compositions of relations max-prod composition $(P \odot Q)(x, z) = \max_{y \in \mathcal{Y}} \{P(x, y) \cdot Q(y, z)\}$ generalization: sup-t composition $(P \circ Q)(x, z) = \sup_{y \in \mathcal{Y}} \{t(P(x, y), Q(y, z))\},$ e.g.: $t(a,b) = min\{a, b\} \Rightarrow max-min-composition$	vhere t(.,.) is a t-norm	Fuzzy Relations Fuzzy Relations Binary fuzzy relations • reflexive • irreflexive • antireflexive • symmetric • asymmetric • antisymmetric • transitive • intransitive • antitransitive	Lecture 03 s on X x X : properties $\Rightarrow \forall x \in X : R(x,x) = 1$ $\Rightarrow \exists x \in X : R(x,x) < 1$ $\Rightarrow \forall x \in X : R(x,x) < 1$ $\Rightarrow \forall x \in X : R(x,x) < 1$ $\Rightarrow \forall (x,y) \in X x X : R(x,y) = R(y,x)$ $\Rightarrow \exists (x,y) \in X x X : R(x,y) \neq R(y,x)$ $\Rightarrow \forall (x,y) \in X x X : R(x,y) \neq R(y,x)$ $\Rightarrow \forall (x,z) \in X x X : R(x,z) \ge \max \min \{ R(x,y), R(y,z) \}$ $\Rightarrow \forall (x,z) \in X x X : R(x,z) < \max \min \{ R(x,y), R(y,z) \}$ $\Rightarrow \forall (x,z) \in X x X : R(x,z) < \max \min \{ R(x,y), R(y,z) \}$	

Fuzzy Relations		Lecture 03	Fuzzy Relations Lecture 03
-	cities in Ge ded to repr		crisp: relation R is <u>equivalence relation</u> , R reflexive, symmetric, transitive fuzzy: relation R is <u>similarity relation</u> , R reflexive, symmetric, (max-min-) transitive
\Rightarrow reflexive		lose to city y, then also vice versa.	 examples: equivalence relation: farm animals
DU 1 0.7 0 E 0.7 1 0 DO 0.5 0.8 0 HA 0.4 0.8 0	DO HA 0.5 0.4 0.8 0.8 1 0.9 0.9 1	Duisburg BU BU E E E BO BO Hagen HA $R(DO,DU) = 0.5 < \max_{y} \min\{R(DO,y), R(y, DU)\} = 0.7$ $R(E, DO) = 0.8 \ge \max\min\{R(E, y), R(y, DO)\} = 0.8$	 cattle, pigs, chicken, R(cow, ox) = 1 but R(cow, hen) = 0 similarity relation: farm animals cattle, pigs, chicken, horse, donkey, R(mule, (male) donkey) = 0.5 and R(mule, (female) horse) = 0.5
⇒ intransitive U technische universität dortmund		y G. Rudolph: Computational Intelligence • Winter Term 2020/	9 UU dortmund
e.g.: color can attain va	lues red , g f linguistic	variable are called linguistic terms	Fuzzy Logic Lecture 03 fuzzy proposition p: temperature is high inguistic inguistic variable (LV) term (LT)
1	green-bl blue- green 450	lue green green-yellow λ [nm]	 LV may be associated with several LT : <i>high, medium, low,</i> <i>high, medium, low</i> temperature are fuzzy sets over numerical scale of crisp temperatures <u>trueness</u> of fuzzy proposition "temperature is high" for a given concrete crisp temperature value v is interpreted as equal to the degree of membership <i>high</i>(v) of the fuzzy set <i>high</i>
U technische universität dortmund		G. Rudolph: Computational Intelligence • Winter Term 2020/	G. Rudolph: Computational Intelligence • Winter Term 202 dortmund




15

dortmund

dortmund

16

	example: GMT	
$\frac{a \Rightarrow b}{\overline{b}}$	considerA: x_1 x_2 x_3 0.51.00.6with the rule: IF X is A THEN Y is B	B: y ₁ y ₂ 1.0 0.4
IF X is A, THEN Y is B Y is B' X is A'	given fact B': $y_1 \ y_2 \ 0.9 \ 0.7$ with Imp(a,b) = min{1, 1-a+b }	$\Rightarrow \begin{array}{ c c c c c c c c } \hline \mathbf{R} & x_1 & x_2 & x_3 \\ \hline y_1 & 1.0 & 1.0 & 1.0 \\ \hline y_2 & 0.9 & 0.4 & 0.8 \end{array}$
<i>rgy consumption</i> is high nal	thus: $B' \circ R^{-1} = A' (0.9 \ 0.7)$ with max-min-composition	$D\left(\begin{array}{cccc} 1.0 & 1.0 & 1.0 \\ 0.9 & 0.4 & 0.8 \end{array}\right) = \left(\begin{array}{cccc} 0.9 & 0.9 & 0.9 \end{array}\right)$
		G. Rudolph: Computational Intelligence • Winter Term 2020/2
Lecture 03	Fuzzy Logic	Lecture 03
	example: GHS	
$ \begin{array}{c} \mathbf{a} \Rightarrow \mathbf{b} \\ \mathbf{b} \Rightarrow \mathbf{c} \\ \mathbf{a} \Rightarrow \mathbf{c} \end{array} $	let fuzzy sets A(x), B(x), C(x) be given \Rightarrow determine the three relations	
IF X is A, THEN Y is B IF Y is B, THEN Z is C IF X is A, THEN Z is C	$\begin{aligned} R_1(x,y) &= Imp(A(x),B(y)) \\ R_2(y,z) &= Imp(B(y),C(z)) \\ R_3(x,z) &= Imp(A(x),C(z)) \\ \end{aligned}$ and express them as matrices R ₁ ,	R ₂ , R ₃
<i>ergy consumption</i> is high igh, THEN <i>living</i> is expensive	We say: GHS is valid if $R_1 \circ R_2 = R_3$	
ng is expensive		
	$\frac{b}{a}$ $\frac{IF X \text{ is A, THEN Y is B}}{Y \text{ is B}^{'}}$ $\frac{IF X \text{ is A, THEN Y is B}}{X \text{ is A}^{'}}$ $\frac{G. \text{ Rudolph: Computational Intelligence - Winter Term 2020/}}{\textbf{Lecture 03}}$ $\frac{a \Rightarrow b}{b \Rightarrow c}$ $a \Rightarrow c$ $\frac{IF X \text{ is A, THEN Y is B}}{IF Y \text{ is B, THEN Z is C}}$ $\frac{IF X \text{ is A, THEN Z is C}}{IF X \text{ is A, THEN Z is C}}$ $\frac{Fry consumption \text{ is high}}{F(HEN living \text{ is expensive})}$	$\frac{a \Rightarrow b}{b}$ $\frac{b}{a}$

Fuzzy Logic	Lecture 03	Fuzzy Logic	Lecture 03
So, what makes sense for $Imp(\cdot, \cdot)$?		So, what makes sense for $Imp(\cdot, \cdot)$?	
Imp(a,b) ought to express fuzzy version of implication ($(a \Rightarrow b)$		
conventional: $a \Rightarrow b$ identical to $\overline{a} \lor b$		1st approach: S implications	
		conventional: $a \Rightarrow b$ identical to $\overline{a} \lor b$)
But how can we calculate with fuzzy "boolean" express	ione?	fuzzy: $Imp(a, b) = s(c(a), b)$	
request: must be compatible to crisp version (and mor		2nd approach: R implications	
request. must be compatible to clisp version (and mor		conventional: $a \Rightarrow b$ identical to max-	$x \in \{0,1\}$ as $x \le b$
a b $a \land b$ $t(a,b)$ a b $a \lor b$ $s(a,b)$	a a c(a)		
		fuzzy: $Imp(a, b) = max\{ x \in [0,1] : t(a, x) \le b \}$	
0 1 0 0 1 1 1 1 1 0 0 3rd approach: QL implications			
1 0 0 0 1 0 1 1		conventional: $a \Rightarrow b$ identical to $\overline{a} \lor b$	$\equiv \overline{a} \lor (a \land b)$ law of absorption
		fuzzy: $Imp(a, b) = s(c(a), t(a, b))$	(dual tripel ?)
G Budoloh: Corr	nputational Intelligence • Winter Term 2020/21	· · · · · · · · · · · · ·	G. Rudolph: Computational Intelligence • Winter Term 20
U technische universität G. Rudolph: Com dortmund	29	tochnische universität dortmund	
uzzy Logic	Lecture 03	Fuzzy Logic	Lecture 03
example: S implication $Imp(a, b) = s(c_s(a), b)$	b) (c _s : std. complement)	example: R implicationen Imp(a, b) = max{ $x \in [0,1] : t(a, x) \le b$ }
 example: S implication Imp(a, b) = s(c_s(a), b 1. Kleene-Dienes implication 	b) (c _s : std. complement)	example: R implicationenImp(a, b1. Gödel implication	
1. Kleene-Dienes implication	b) (c _s : std. complement) np(a,b) = max{ 1-a, b }		$) = \max\{ x \in [0,1] : t(a, x) \le b \} $ $ Imp(a, b) = \begin{cases} 1 & , \text{ if } a \le b \\ b & , \text{ else} \end{cases} $
 Kleene-Dienes implication s(a, b) = max{ a, b } (standard) Implication 		1. Gödel implication	$Imp(a,b) = \begin{cases} 1 & \text{, if } a \leq b \\ b & \text{, else} \end{cases}$
 Kleene-Dienes implication s(a, b) = max{ a, b } (standard) Im Reichenbach implication 		 Gödel implication t(a, b) = min{ a, b } (std.) 	$Imp(a,b) = \begin{cases} 1 & \text{, if } a \leq b \\ b & \text{, else} \end{cases}$

(bounded sum)

s(a, b) = min{ 1, a + b }

Imp(a, b) = min{ 1, 1 – a + b }

 $t(a, b) = max\{0, a + b - 1\}$ (bounded diff.) $Imp(a, b) = min\{1, 1 - a + b\}$

Fuzzy Logic		Lecture 03	Fuzzy Logic	Lecture 03
example: QL impl	ication Imp(a, b) = s(c(a),	t(a, b))	axioms for fuzzy implications	
 Zadeh implication t(a, b) = min { a, b s(a,b) = max{ a, b "NN" implication @ t(a, b) = ab s(a,b) = a + b - ab Kleene-Dienes im t(a, b) = max{ 0, a s(a,b) = min { 1, a 	0 }(std.)Imp(a, 0 }(std.)Imp(a, 0 (Klir/Yuan 1994)(algebr. prd.)Imp(a, b (algebr. sum)Imp(a, b (algebr. sum)Imp(a, $a + b - 1$ }(bounded diff.)Imp(a,	b) = max{ 1 - a, min{a, b} } b) = 1 - a + a ² b , b) = max{ 1-a, b }	1. $a \le b$ implies $Imp(a, x) \ge Imp(b, 2)$ 2. $a \le b$ implies $Imp(x, a) \le Imp(x, 3)$ 3. $Imp(0, a) = 1$ 4. $Imp(1, b) = b$ 5. $Imp(a, a) = 1$ 6. $Imp(a, Imp(b, x)) = Imp(b, Imp(a, 3))$ 7. $Imp(a, b) = 1$ iff $a \le b$ 8. $Imp(a, b) = Imp(c(b), c(a))$ 9. $Imp(\cdot, \cdot)$ is continuous	b) monotone in 2nd argument dominance of falseness neutrality of trueness identity
U technische universität dortmund	G. Rudolph: Co	bomputational Intelligence • Winter Term 2020/21 33	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2020
Caution! Not all S-, R-, QL- im Implication	plications obey <u>all</u> axioms for fuzz Valid Axioms	y implications!	characterization of fuzzy impli Theorem: Imp: $[0,1] \times [0,1] \rightarrow [0,1]$ satisfies ax for a certain fuzzy complement c(·)	kioms 1 - 9 for fuzzy implications
Kleene-Dienes Reichenbach Łukasiewicz Gödel Goguen Zadeh	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	∃ strictly monotone increasing, cont • $f(0) = 0$ • $\forall a, b \in [0,1]$: Imp $(a, b) = f^{-1}($ • $\forall a \in [0,1]$: c $(a) = f^{-1}(f(1) - f(a))$ Proof: Smets & Magrez (1987), p.	a))
Klir-Yuan	- 2 3 4 9 G. Rudolph: Co	omputational Intelligence • Winter Term 2020/21 35	examples: (in tutorial)	G. Rudolph: Computational Intelligence • Winter Term 2020

Fuzzy Logic

Lecture 03

choosing an "appropriate" fuzzy implication ...

apt quotation: (Klir & Yuan 1995, p. 312)

"To select an appropriate fuzzy implication for approximate reasoning under each particular situation is a difficult problem."

guideline:

GMP, GMT, GHS should be compatible with MP, MT, HS for fuzzy implication in calculations with relations: $B(y) = \sup \{ t(A(x), Imp(A(x), B(y))) : x \in X \}$

example:

Gödel implication for t-norm = bounded difference

U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2020/21 37