technische universität	Plan for Today Lecture 06						
Computational Intelligence Winter Term 2020/21	 Design of Evolutionary Algorithms Design Guidelines Genotype-Phenotype Mapping Maximum Entropy Distributions 						
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund	G. Rudolph: Computational Intelligence • Winter Term 2020/2						
Design of Evolutionary Algorithms Lecture 06	Design of Evolutionary Algorithms Lecture 06						
 <u>Three tasks:</u> Choice of an appropriate problem representation. Choice / design of variation operators acting in problem representation. Choice of strategy parameters (includes initialization). 	ad 1a) genotype-phenotype mapping original problem f: $X \rightarrow \mathbb{R}^d$ scenario: no standard algorithm for search space X available $X \longrightarrow f \longrightarrow \mathbb{R}^d$						
 (a) operate on binary representation and define genotype/phenotype mapping + can use standard algorithm - mapping may induce unintentional bias in search (b) no doctrine: use "most natural" representation - must design variation operators for specific representation + if design done properly then no bias in search 	 g e standard EA performs variation on binary strings b ∈ Bⁿ fitness evaluation of individual b via (f ∘ g)(b) = f(g(b)) where g: Bⁿ → X is genotype-phenotype mapping e selection operation independent from representation 						
technische universität G. Rudolph: Computational Intelligence • Winter Term 2020/21 dortmund 3	technische universität G. Rudolph: Computational Intelligence • Winter Term 2020/2 dortmund						

1 [

Design of I	Evolutio	nary	Algori	thms			Lectur	e 06	Design of Evolutionary Algorithms Lecture 06										
Genotype-Phenotype-Mapping $\mathbb{B}^n \to [L, R] \subset \mathbb{R}$ • Standard encoding for $b \in \mathbb{B}^n$ $x = L + \frac{R - L}{2^n - 1} \sum_{i=0}^{n-1} b_{n-i} 2^i$ \rightarrow Problem: hamming cliffs							Genotype-Phenotype-Mapping $B^n \rightarrow [L, R] \subset R$ • Gray encoding for b ∈ B^n Let a ∈ B^n standard encoded. Then b = $\begin{cases} a_i, & \text{if } i = 1 \\ 0 & 0 \\ 0 & $												
								000	001	011 2	010	110 4	111 5	a _{i-1} ⊕ a _i , 101 6	, if i > 1 100 7] ←— gen] ←— phe	otype notype		
000 001 010 101 110 111 \leftarrow genotype 0 1 2 3 4 5 6 7 \leftarrow phenotype 0 1 2 3 4 5 6 7 \leftarrow phenotype 1 1 1 1 1 1 1 1 $=$ phenotype 1 </td <td>enotype k): notype!</td> <td></td>										enotype k): notype!									
tu technische dortmund	technische universität G. Rudolph: Computational Intelligence • Winter Term 2020/21							G. Rudolph: Computational Intelligence • Winter Term 2020/21 6											
Design of I	Design of Evolutionary Algorithms Lecture 06					Design of Evolutionary Algorithms Lecture 06													
Genotype-Phenotype-Mapping $B^n \to P^{\log(n)}$ (example only) • e.g. standard encoding for $b \in B^n$						 ad 1a) genotype-phenotype mapping typically required: strong causality → small changes in individual leads to small changes in fitness → small changes in genotype should lead to small changes in phenotype 													
010	101	111	000	110	001	101	100	← genotype	but	how to t	find a de	notype	-nhenot	type ma	anning w	vith tha	t proper	tv?	
0	1	2	3	4	5	6	7	← index			inia a go	notype	priction	iype me	apping v		it proper		_
consider index and associated genotype entry as unit / record / struct; sort units with respect to genotype value, old indices yield permutation: 000 001 010 101 101 110 111 \leftarrow genotype 3 5 0 7 1 6 4 2 \leftarrow old index						necessary conditions: 1) g: B ⁿ → X can be computed efficiently (otherwise it is senseless) 2) g: B ⁿ → X is surjective (otherwise we might miss the optimal solution) 3) g: B ⁿ → X preserves closeness (otherwise strong causality endangered) Let d(·, ·) be a metric on B ⁿ and d _x (·, ·) be a metric on X.													
								= permutation	∀ x , ;	y, $z \in \mathbb{B}^r$	': d(x, y) ≤ d(x, :	$z) \Rightarrow d$	_x (g(x), g	g(y)) ≤ d	l _x (g(x),	g(z))		

1

technische universität dortmund

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2020/21 7

G. Rudolph: Computational Intelligence • Winter Term 2020/21 8

Design of Evolutionary Algorithms Lecture 06	Design of Evolutionary Algorithms Lecture 06								
ad 1b) use "most natural" representation	ad 2) design guidelines for variation operators								
typically required: strong causality									
ightarrow small changes in individual leads to small changes in fitness	a) reachability								
\rightarrow need variation operators that obey that requirement	every $x \in X$ should be reachable from arbitrary $x_0 \in X$ after finite number of repeated variations with positive probability bounded from 0								
but: how to find variation operators with that property?	b) unbiasedness								
\Rightarrow need design guidelines	 unless having gathered knowledge about problem variation operator should not favor particular subsets of solutions ⇒ formally: maximum entropy principle c) control variation operator should have parameters affecting shape of distributions; known from theory: weaken variation strength when approaching optimum 								
U technische universität G. Rudolph: Computational Intelligence • Winter Term 2020/21 9 Design of Evolutionary Algorithms	G. Rudolph: Computational Intelligence • Winter Term 2020/2: 11 Design of Evolutionary Algorithms								
ad 2) design guidelines for variation operators in practice	b) unbiasedness								
binary search space $X = B^n$	don't prefer any direction or subset of points without reason								
variation by k-point or uniform crossover and subsequent mutation									
	\Rightarrow use maximum entropy distribution for sampling!								
a) reachability:									
we can move from $x \in B^n$ to $y \in B^n$ in 1 step with probability	properties:								
$p(x,y) = p_m^{H(x,y)} (1 - p_m)^{n - H(x,y)} > 0$	- distributes probability mass as uniform as possible								
	- additional knowledge can be included as constraints:								
where H(x,y) is Hamming distance between x and y.	\rightarrow under given constraints sample as uniform as possible								
Since min{ $p(x,y)$: $x,y \in B^{u}$ } = $\delta > 0$ we are done.									
technische universität G. Rudolph: Computational Intelligence • Winter Term 2020/21	G. Rudolph: Computational Intelligence • Winter Term 2020/2								

Design of Evolutionary Algorithms

Lecture 06

Formally:

Definition:

Let X be discrete random variable (r.v.) with $p_k = P\{X = x_k\}$ for some index set K. The quantity

$$H(X) = -\sum_{k \in K} p_k \log p_k$$

is called the entropy of the distribution of X. If X is a continuous r.v. with p.d.f. $f_{x}(\cdot)$ then the entropy is given by

$$H(X) = -\int_{-\infty}^{\infty} f_X(x) \log f_X(x) dx$$

The distribution of a random variable X for which H(X) is maximal is termed a maximum entropy distribution.

Excursion: Maximum Entropy Distributions

Lecture 06

Knowledge available:

Discrete distribution with support { x_1, x_2, \dots, x_n } with $x_1 < x_2 < \dots x_n < \infty$

$$p_k = \mathsf{P}\{X = x_k\}$$

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \rightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right)$$

G. Rudolph: Computational Intelligence • Winter Term 2020/21 14

G. Rudolph: Computational Intelligence • Winter Term 2020/21

13

Excursion: Maximum Entropy Distributions Lecture 06 $L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right)$

partial derivatives:

J technische universität dortmund

$$\frac{\partial L(p,a)}{\partial p_k} = -1 - \log p_k + a \stackrel{!}{=} 0 \qquad \Rightarrow p_k \stackrel{!}{=} e^{a-1}$$

$$\frac{\partial L(p,a)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0 \qquad p_k = \frac{1}{n}$$

$$\Rightarrow \sum_{k=1}^n p_k = \sum_{k=1}^n e^{a-1} = n e^{a-1} \stackrel{!}{=} 1 \quad \Leftrightarrow \quad e^{a-1} = \frac{1}{n}$$

$$\lim_{k \to \infty} e^{a-1} = \frac{1}{n}$$

$$\lim_{k \to \infty} e^{a-1} = \frac{1}{n}$$

Excursion: Maximum Entropy Distributions Lecture 06

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with $p_k = P \{ X = k \}$ and E[X] = v

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1 \text{ and } \sum_{k=1}^{n} k p_k = \nu$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

technische universität dortmund

Excursion: Maximum Entropy Distributions

Lecture 06

G. Rudolph: Computational Intelligence • Winter Term 2020/21

Excursion: Maximum Entropy Distributions

Lecture 06

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1 \right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

partial derivatives:

technische universität dortmund

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(\bigstar)}{=} \sum_{k=1}^n k p_k - \nu \stackrel{!}{=} 0 \qquad \sum_{k=1}^n p_k = e^{a-1} \sum_{k=1}^n (e^b)^k \stackrel{!}{=} 1$$
(continued on next slide)

 $\Rightarrow e^{a-1} = \frac{1}{\sum\limits_{k=1}^{n} (e^b)^k} \qquad \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum\limits_{i=1}^{n} (e^b)^i}$

⇒ discrete Boltzmann distribution

$$p_k = \frac{q^k}{\sum\limits_{i=1}^n q^i} \qquad (q = e^b)$$

 \Rightarrow value of q depends on v via third condition: (\bigstar)

$$\sum_{k=1}^{n} k p_{k} = \frac{\sum_{k=1}^{n} k q^{k}}{\sum_{i=1}^{n} q^{i}} = \frac{1 - (n+1) q^{n} + n q^{n+1}}{(1-q) (1-q^{n})} \stackrel{!}{=} \nu$$

technische universität

17

G. Rudolph: Computational Intelligence • Winter Term 2020/21 18

Excursion: Maximum Entropy Distributions Lecture 06

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with E[X] = v and V[X] = η^2

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!$$

s.t.
$$\sum_{k=1}^{n} p_k = 1 \text{ and } \sum_{k=1}^{n} k p_k = \nu \text{ and } \sum_{k=1}^{n} (k-\nu)^2 p_k = \eta^2$$

solution: in principle, via Lagrange (find stationary point of Lagrangian function)

but very complicated analytically, if possible at all	note: constraints
\rightarrow consider special cases only	are linear
	equations in p

technische universität dortmund

technische universität dortmund

27

