

# **Computational Intelligence**

Winter Term 2020/21

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

**TU Dortmund** 

- Design of Evolutionary Algorithms
  - Design Guidelines
  - Genotype-Phenotype Mapping
  - Maximum Entropy Distributions

## Three tasks:

- 1. Choice of an appropriate problem representation.
- 2. Choice / design of variation operators acting in problem representation.
- 3. Choice of strategy parameters (includes initialization).

- ad 1) different "schools":
  - (a) operate on binary representation and define genotype/phenotype mapping
    - + can use standard algorithm
    - mapping may induce unintentional bias in search

(b) no doctrine: use "most natural" representation

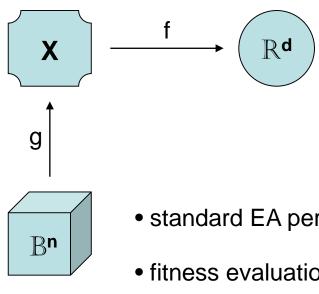
- must design variation operators for specific representation
- + if design done properly then no bias in search

# **Design of Evolutionary Algorithms**

ad 1a) genotype-phenotype mapping

original problem f:  $X \to \mathbb{R}^d$ 

scenario: no standard algorithm for search space X available



- $\bullet$  standard EA performs variation on binary strings  $b \in \mathbb{B}^n$
- fitness evaluation of individual b via (f ∘ g)(b) = f(g(b))
   where g: B<sup>n</sup> → X is genotype-phenotype mapping
- selection operation independent from representation

4

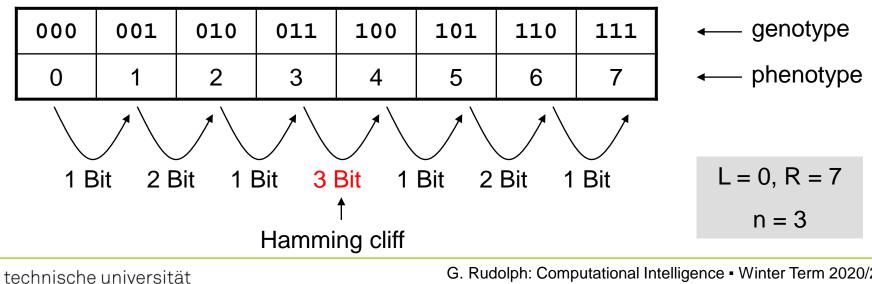
**Genotype-Phenotype-Mapping**  $\mathbb{B}^n \to [L, R] \subset \mathbb{R}$ 

• Standard encoding for  $b \in \mathbb{B}^n$ 

$$x = L + \frac{R - L}{2^n - 1} \sum_{i=0}^{n-1} b_{n-i} 2^i$$

 $\rightarrow$  Problem: hamming cliffs

dortmund



G. Rudolph: Computational Intelligence • Winter Term 2020/21

**Genotype-Phenotype-Mapping**  $\mathbb{B}^n \to [L, R] \subset \mathbb{R}$ 

 $\bullet$  Gray encoding for  $b \in \mathbb{B}^n$ 

Let  $a \in \mathbb{B}^n$  standard encoded. Then  $b_i = \begin{cases} a_i, & \text{if } i = 1 \\ a_{i-1} \oplus a_i, & \text{if } i > 1 \end{cases} \oplus = XOR$ 

| 000 | 001 | 011 | 010 | 110 | 111 | 101 | 100 | ← genotype |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
| 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | phenotype  |

OK, no hamming cliffs any longer ...

 $\Rightarrow$  small changes in phenotype "lead to" small changes in genotype

since we consider evolution in terms of Darwin (not Lamarck):

 $\Rightarrow$  small changes in genotype lead to small changes in phenotype!

**but:** 1-Bit-change:  $000 \rightarrow 100 \Rightarrow \bigotimes$ 

**Genotype-Phenotype-Mapping**  $\mathbb{B}^n \to \mathbb{P}^{\log(n)}$  (example only)

 $\bullet$  e.g. standard encoding for  $b \in \mathbb{B}^n$ 

individual:

| 010 | 101 | 111 | 000 | 110 | 001 | 101 | 100 | ← genotype |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
| 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | ← index    |

consider index and associated genotype entry as unit / record / struct;

sort units with respect to genotype value, old indices yield permutation:

| 000 | 001 | 010 | 100 | 101 | 101 | 110 | 111 | ← genotype  |
|-----|-----|-----|-----|-----|-----|-----|-----|-------------|
| 3   | 5   | 0   | 7   | 1   | 6   | 4   | 2   | ← old index |

= permutation

7

ad 1a) genotype-phenotype mapping

typically required: strong causality

- $\rightarrow$  small changes in individual leads to small changes in fitness
- $\rightarrow$  small changes in genotype should lead to small changes in phenotype

but: how to find a genotype-phenotype mapping with that property?

## necessary conditions:

- 1) g:  $\mathbb{B}^n \to X$  can be computed efficiently (otherwise it is senseless)
- 2) g:  $\mathbb{B}^n \to X$  is surjective (otherwise we might miss the optimal solution)
- 3) g:  $\mathbb{B}^n \to X$  preserves closeness (otherwise strong causality endangered)

Let d( $\cdot$ ,  $\cdot$ ) be a metric on  $\mathbb{B}^n$  and d<sub>X</sub>( $\cdot$ ,  $\cdot$ ) be a metric on X.

 $\forall x, \, y, \, z \, \in \, \mathbb{B}^n \colon d(x, \, y) \leq d(x, \, z) \, \Rightarrow d_X(g(x), \, g(y)) \leq d_X(g(x), \, g(z))$ 

ad 1b) use "most natural" representation

typically required: strong causality

- $\rightarrow$  small changes in individual leads to small changes in fitness
- $\rightarrow$  need variation operators that obey that requirement

but: how to find variation operators with that property?

 $\Rightarrow$  need design guidelines ...



## ad 2) design guidelines for variation operators

## a) reachability

every  $x \in X$  should be reachable from arbitrary  $x_0 \in X$ after finite number of repeated variations with positive probability bounded from 0

## b) unbiasedness

unless having gathered knowledge about problem variation operator should not favor particular subsets of solutions  $\Rightarrow$  formally: <u>maximum entropy principle</u>

## c) control

variation operator should have parameters affecting shape of distributions; known from theory: weaken variation strength when approaching optimum



## ad 2) design guidelines for variation operators in practice

#### binary search space $X = \mathbb{B}^n$

variation by k-point or uniform crossover and subsequent mutation

#### a) *reachability*:

regardless of the output of crossover we can move from  $x \in \mathbb{B}^n$  to  $y \in \mathbb{B}^n$  in 1 step with probability

$$p(x,y) = p_m^{H(x,y)} (1 - p_m)^{n - H(x,y)} > 0$$

where H(x,y) is Hamming distance between x and y.

Since  $\min\{p(x,y): x, y \in \mathbb{B}^n\} = \delta > 0$  we are done.

## b) **unbiasedness**

don't prefer any direction or subset of points without reason

 $\Rightarrow$  use maximum entropy distribution for sampling!

properties:

- distributes probability mass as uniform as possible
- additional knowledge can be included as constraints:
   → under given constraints sample as uniform as possible



#### Formally:

## **Definition:**

Let X be discrete random variable (r.v.) with  $p_k = P\{X = x_k\}$  for some index set K. The quantity

$$H(X) = -\sum_{k \in K} p_k \log p_k$$

is called the *entropy of the distribution* of X. If X is a continuous r.v. with p.d.f.  $f_X(\cdot)$  then the entropy is given by

$$H(X) = -\int_{-\infty}^{\infty} f_X(x) \log f_X(x) dx$$

The distribution of a random variable X for which H(X) is maximal is termed a *maximum entropy distribution*.



# Knowledge available:

Discrete distribution with support {  $x_1, x_2, ..., x_n$  } with  $x_1 < x_2 < ..., x_n < \infty$ 

$$p_k = \mathsf{P}\{X = x_k\}$$

Lecture 06

 $\Rightarrow$  leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \rightarrow \max!$$
  
s.t. 
$$\sum_{k=1}^{n} p_k = 1$$

solution: via Lagrange (find stationary point of Lagrangian function)

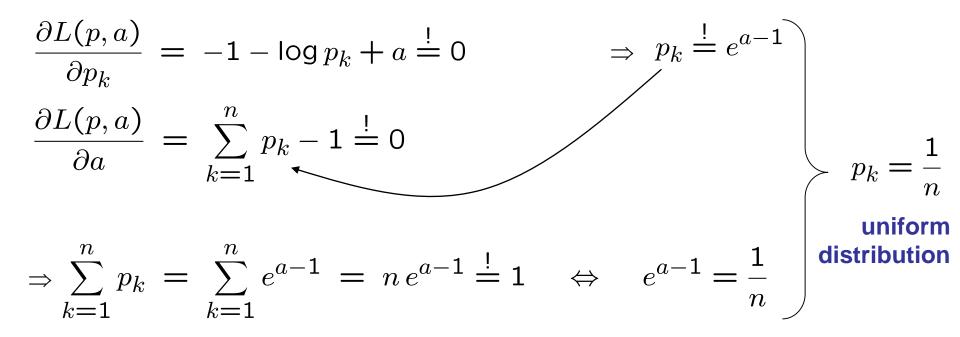
$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left( \sum_{k=1}^{n} p_k - 1 \right)$$

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2020/21

Lecture 06

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left( \sum_{k=1}^{n} p_k - 1 \right)$$

partial derivatives:



## Knowledge available:

 $\mathbf{n}$ 

Discrete distribution with support { 1, 2, ..., n } with  $p_k = P \{ X = k \}$  and E[X] = v

 $\Rightarrow$  leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \rightarrow \max!$$
  
s.t. 
$$\sum_{k=1}^{n} p_k = 1 \text{ and } \sum_{k=1}^{n} k p_k = \nu$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left( \sum_{k=1}^{n} p_k - 1 \right) + b \left( \sum_{k=1}^{n} k \cdot p_k - \nu \right)$$

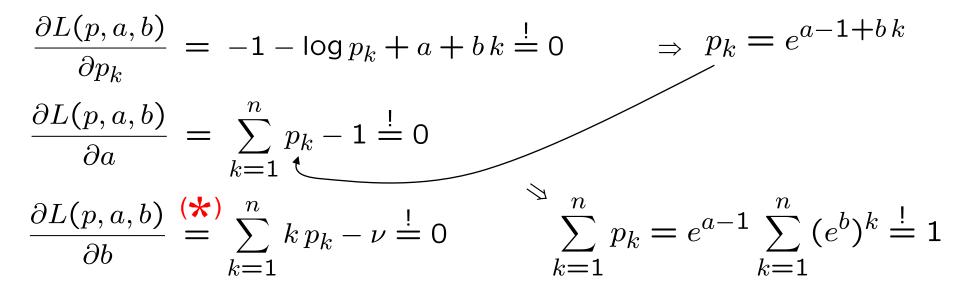
technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2020/21

Lecture 06

Lecture 06

$$L(p,a,b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu\right)$$

partial derivatives:



(continued on next slide)



#### Lecture 06

$$\Rightarrow e^{a-1} = \frac{1}{\sum_{k=1}^{n} (e^b)^k} \qquad \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=1}^{n} (e^b)^i}$$

⇒ discrete Boltzmann distribution

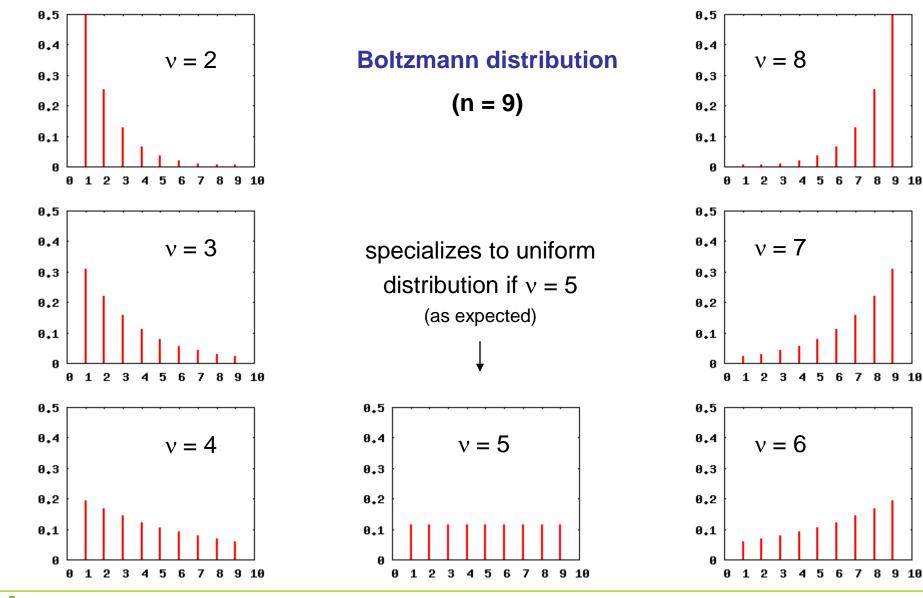
$$p_k = \frac{q^k}{\sum\limits_{i=1}^n q^i} \qquad (q = e^b)$$

 $\Rightarrow$  value of q depends on v via third condition: ( $\bigstar$ )

$$\sum_{k=1}^{n} k p_k = \frac{\sum_{k=1}^{n} k q^k}{\sum_{i=1}^{n} q^i} = \frac{1 - (n+1) q^n + n q^{n+1}}{(1-q) (1-q^n)} \stackrel{!}{=} \nu$$

G. Rudolph: Computational Intelligence • Winter Term 2020/21 18

## Lecture 06



technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2020/21

8 9 10

8 9 10

## Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with E[ X ] = v and V[ X ] =  $\eta^2$ 

 $\Rightarrow$  leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^{n} p_k \log p_k \longrightarrow \max!$$
  
s.t. 
$$\sum_{k=1}^{n} p_k = 1 \quad \text{and} \quad \sum_{k=1}^{n} k p_k = \nu \quad \text{and} \quad \sum_{k=1}^{n} (k-\nu)^2 p_k = \eta^2$$

solution:in principle, via Lagrange (find stationary point of Lagrangian function)but very complicated analytically, if possible at allnote: constraints<br/>are linear<br/>equations in  $p_k$ 

Lecture 06

**Special case**: n = 3 and E[X] = 2 and  $V[X] = \eta^2$ 

Linear constraints uniquely determine distribution:

I. 
$$p_1 + p_2 + p_3 = 1$$
  
II.  $p_1 + 2p_2 + 3p_3 = 2$   
III.  $p_1 + 0 + p_3 = \eta^2$   
II.  $p_1 + 0 + p_3 = \eta^2$   
II.  $p_2 + 2p_3 = 1$   
 $p_3 = \frac{\eta^2}{2}$   
 $p_3 = \frac{\eta^2}{2}$ 

U technische universität dortmund G. Rudolph: Computational Intelligence - Winter Term 2020/21

## Lecture 06

## Knowledge available:

Discrete distribution with unbounded support { 0, 1, 2, ... } and E[X] = v

 $\Rightarrow$  leads to <u>infinite-dimensional</u> nonlinear constrained optimization problem:

$$-\sum_{k=0}^{\infty} p_k \log p_k \to \max!$$
  
s.t. 
$$\sum_{k=0}^{\infty} p_k = 1 \quad \text{and} \quad \sum_{k=0}^{\infty} k p_k = \nu$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

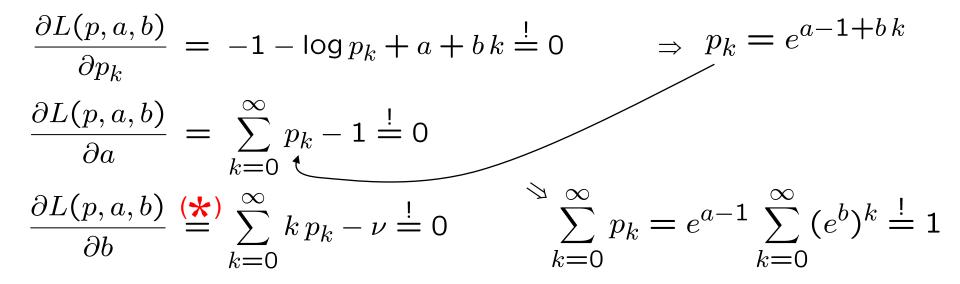
technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2020/21

Lecture 06

$$L(p,a,b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

partial derivatives:



(continued on next slide)



Lecture 06

$$\Rightarrow e^{a-1} = \frac{1}{\sum_{k=0}^{\infty} (e^b)^k} \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=0}^{\infty} (e^b)^i}$$
  
set  $q = e^b$  and insists that  $q < 1 \Rightarrow \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$  insert

 $\Rightarrow p_k = (1 - q) q^k$  for k = 0, 1, 2, ... geometrical distribution

it remains to specify q; to proceed recall that

$$\sum_{k=0}^{\infty} k \, q^k \; = \; \frac{q}{(1-q)^2}$$



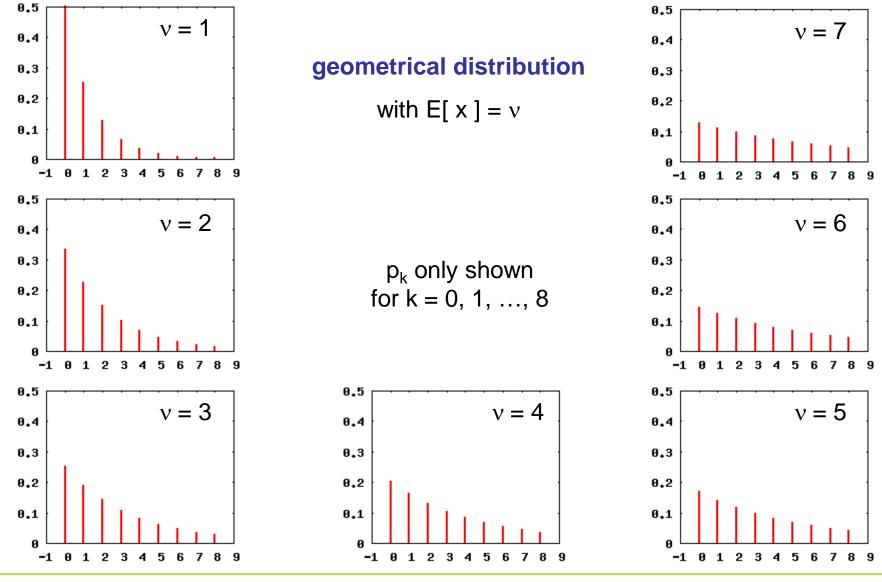
- Lecture 06
- $\Rightarrow$  value of q depends on v via third condition: (\*)

$$\sum_{k=0}^{\infty} k p_k = \frac{\sum_{k=0}^{\infty} k q^k}{\sum_{i=0}^{\infty} q^i} = \frac{q}{1-q} \stackrel{!}{=} \nu$$

$$\Rightarrow \quad q = \frac{\nu}{\nu+1} = 1 - \frac{1}{\nu+1}$$

$$\Rightarrow p_k = \frac{1}{\nu+1} \left( 1 - \frac{1}{\nu+1} \right)^k$$

## Lecture 06



U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2020/21 26

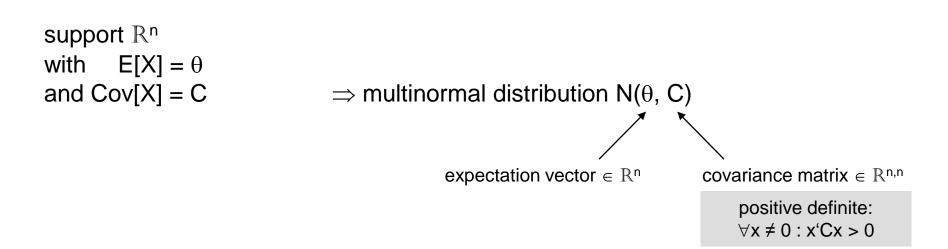
## **Overview:**

| support { 1, 2,, n }            | $\Rightarrow$ discrete uniform distribution                                        |
|---------------------------------|------------------------------------------------------------------------------------|
| and require $E[X] = \theta$     | $\Rightarrow$ <i>Boltzmann</i> distribution                                        |
| and require V[X] = $\eta^2$     | $\Rightarrow$ N.N. ( <b>not</b> Binomial distribution)                             |
|                                 |                                                                                    |
| support $\mathbb{N}$            | $\Rightarrow$ not defined!                                                         |
| and require $E[X] = \theta$     | $\Rightarrow$ geometrical distribution                                             |
| and require V[X] = $\eta^2$     | $\Rightarrow$ ?                                                                    |
|                                 |                                                                                    |
| support $\mathbb{Z}$            | $\Rightarrow$ not defined!                                                         |
| and require $E[ X ] = \theta$   | $\Rightarrow$ <i>bi-geometrical</i> distribution ( <i>discrete Laplace</i> distr.) |
| and require $E[ X ^2] = \eta^2$ | ⇒ N.N. ( <i>discrete Gaussian</i> distr.)                                          |

support [a,b]  $\subset \mathbb{R}$   $\Rightarrow$  uniform distribution

support  $\mathbb{R}^+$  with  $E[X] = \theta \implies$  Exponential distribution

support R with E[X] =  $\theta$ , V[X] =  $\eta^2 \implies$  normal / Gaussian distribution N( $\theta$ ,  $\eta^2$ )





Lecture 06

for permutation distributions ?

 $\rightarrow$  uniform distribution on all possible permutations

```
set v[j] = j for j = 1, 2, ..., n
for i = n to 1 step -1
    draw k uniformly at random from { 1, 2, ..., i }
    swap v[i] and v[k]
endfor
```

## **Guideline:**

Only if you know something about the problem a priori or

if you have learnt something about the problem *during the search* 

 $\Rightarrow$  include that knowledge in search / mutation distribution (via constraints!)