
Computational Intelligence
Winter Term 2020/21

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
2

Plan for Today

● Design of Evolutionary Algorithms

− Case Study: Integer Search Space

− Towards CMA-ES

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
3

Design of Evolutionary Algorithms

integer search space X = Zn

ad 2) design guidelines for variation operators in practice

a) reachability

b) unbiasedness

c) control

ad a) support of mutation should be Zn

ad b) need maximum entropy distribution over support Zn

ad c) control variability by parameter

→ formulate as constraint of maximum entropy distribution

- every recombination results
in some z ∈ Zn

- mutation of z may then lead
to any z* ∈ Zn with positive
probability in one step

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
4

X = Znad 2) design guidelines for variation operators in practice

task: find (symmetric) maximum entropy distribution over Z with E[| Z |] = θ > 0

⇒ need analytic solution of an ∞-dimensional, nonlinear optimization problem
with constraints!

s.t.

max!

(symmetry w.r.t. 0)

(normalization)

(control “spread“)

(nonnegativity)

Z ,

Z .

Design of Evolutionary Algorithms

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
5

Design of Evolutionary Algorithms

result:
a random variable Z with support Z and probability distribution

Z

symmetric w.r.t. 0, unimodal, spread manageable by q and has max. entropy ■

generation of pseudo random numbers: Z = G1 – G2

where

stochastic
independent!

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
6

Design of Evolutionary Algorithms

probability distributions for different mean step sizes E|Z| = θ

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
7

Design of Evolutionary Algorithms

probability distributions for different mean step sizes E|Z| = θ

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
8

Design of Evolutionary Algorithms

How to control the spread?

make mean step size adjustable!

→ θ adjustable by mutative self adaptation

∈ R+ ∈ (0,1)
→ get q from θ

We must be able to adapt q ∈ (0,1) for generating Z with variable E|Z| = θ !

self-adaptation of q in open interval (0,1) ?

like mutative step size size control
of σ in EA with search space Rn !

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
9

Design of Evolutionary Algorithms

Mutative Step Size Control

Individual (x, θ) ∈

First, mutate step size θt+1 = θt ∙ L where L = exp(N) with N ~ N(0, 1/n)

Second, mutate parent Y = x + θt+1 ∙ Z

θt+1 = max{ 1, θt ∙ L }

Often: assure minimal step size ≥ 1 log-normal distributed

P{ L > c } = P {L < 1/c } for c ≥ 1

fL(x)

x

n = 1
n = 2

n = 5

→ invented: Schwefel (1977) for real variables
→ transferred: Rudolph (1994) for integer variables

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
10

Design of Evolutionary Algorithms

n - dimensional generalization

n = 2

random vector Z = (Z1, Z2, ... Zn)

with Zi = G1,i – G2,i (stoch. indep.);

parameter q for all G1i, G2i equal

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
11

Design of Evolutionary Algorithms

n - dimensional generalization

⇒ n-dimensional distribution is symmetric w.r.t. 1 norm!

⇒ all random vectors with same step length have same probability!

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
12

Design of Evolutionary Algorithms

How to control E[|| Z ||1] ?

by def. linearity of E[·] identical distributions for Zi

= θ
self-adaptation calculate from θ

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
13

Design of Evolutionary Algorithms

(Rudolph, PPSN 1994)

Algorithm:

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
14

Design of Evolutionary Algorithms

Example: (1, λ)-EA with λ = 10; f(x) = x‘x → min! ; n = 10

generations

f(x)

θ

initial step size θ0 too large

X(0) ∈

θ0 = 50 000

generations

f(x)

θ

initial step size θ0 too small

X(0) ∈

θ0 = 5

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
15

Excursion: Maximum Entropy Distributions

continuous search space X = Rn

ad 2) design guidelines for variation operators in practice

a) reachability

b) unbiasedness

c) control

→ mutation distribution with unbounded support
→ mutation distribution with maximum entropy

→ mutation distribution with parameters

⇒ leads to CMA-ES !

Covariance
Matrix
Adaptation

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
16

Towards CMA-ES

mutation: Y = X + Z Z ~ N(0, C) multinormal distribution

maximum entropy distribution for
support Rn, given expectation
vector and covariance matrix

how should we choose covariance matrix C?

unless we have not learned something about the problem during search

⇒ don‘t prefer any direction!

⇒ covariance matrix C = In (unit matrix)
xx

C = In

x

C = diag(s1,...,sn) C orthogonal

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
17

Towards CMA-ES

claim: mutations should be aligned to isolines of problem (Schwefel 1981)

if true then covariance matrix should
be inverse of Hessian matrix!

⇒ assume f(x) ≈ ½ x‘Ax + b‘x + c ⇒ H = A

Z ~ N(0, C) with density

since then many proposals how to adapt the covariance matrix

⇒ extreme case: use n+1 pairs (x, f(x)),

apply multiple linear regression to obtain estimators for A, b, c

invert estimated matrix A! OK, but: O(n6)! (Rudolph 1992)

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
18

Towards CMA-ES

doubts: are equi-aligned isolines really optimal?

most (effective) algorithms behave like this:

run roughly into negative gradient direction,
sooner or later we approach longest main principal axis of Hessian,

now negative gradient direction coincidences with direction to optimum,
which is parallel to longest main principal axis of Hessian,
which is parallel to the longest main principal axis of the inverse covariance matrix

(Schwefel OK in this situation)

principal axis

should point into
negative gradient
direction!
(proof next slide)

Lecture 07

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
19

Towards CMA-ES

Z = rQu, A = B‘B, B = Q-1

⇒ set Qu = -∇f(x) (direction of steepest descent)

→ min!

if Qu were deterministic ...

Lecture 07

Apart from (inefficient) regression, how can we get matrix elements of Q?

Towards CMA-ES

⇒ iteratively: C(k+1) = update(C(k), Population(k))

basic constraint: C(k) must be positive definite (p.d.) and symmetric for all k ≥ 0,

otherwise Cholesky decomposition impossible: C = Q‘Q

Lemma

Let A and B be quadratic matrices and α, β > 0.

a) A, B symmetric ⇒ α A + β B symmetric.

b) A positive definite and B positive semidefinite ⇒ α A + β B positive definite

Proof:
ad a) C = α A + β B symmetric, since cij = α aij + β bij = α aji + β bji = cji

ad b) ∀x ∈ Rn \ {0}: x‘(αA + β B) x = α x‘Ax + β x‘Bx

> 0 ≥ 0

> 0
■

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
20

Lecture 07

Theorem

A quadratic matrix C(k) is symmetric and positive definite for all k ≥ 0,

if it is built via the iterative formula C(k+1) = αk C(k) + βk vk v‘k
where C(0) = In, vk ≠ 0, αk > 0 and liminf βk > 0.

Proof:

If v ≠ 0, then matrix V = vv‘ is symmetric and positive semidefinite, since

• as per definition of the dyadic product vij = vi ⋅ vj = vj ⋅ vi = vji for all i, j and

• for all x ∈ Rn : x‘ (vv‘) x = (x‘v) ⋅ (v‘x) = (x‘v)2 ≥ 0.
Thus, the sequence of matrices vkv‘k is symmetric and p.s.d. for k ≥ 0.
Owing to the previous lemma matrix C(k+1) is symmetric and p.d., if

C(k) is symmetric as well as p.d. and matrix vkv‘k is symmetric and p.s.d.

Since C(0) = In symmetric and p.d. it follows that C(1) is symmetric and p.d.

Repetition of these arguments leads to the statement of the theorem. ■

Towards CMA-ES

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
21

Lecture 07

Idea: Don‘t estimate matrix C in each iteration! Instead, approximate iteratively!
(Hansen, Ostermeier et al. 1996ff.)

→ Covariance Matrix Adaptation Evolutionary Algorithm (CMA-EA)

Set initial covariance matrix to C(0) = In

C(t+1) = (1-η) C(t) + η wi (xi:λ – m(t)) (xi:λ – m(t))‘
η : “learning rate“ ∈ (0,1)

wi : weights; mostly 1/µ

sorting: f(x1:λ) ≤ f(x2:λ) ≤ ... ≤ f(xλ:λ)

m = mean of all selected parents complexity:
O(µn2 + n3)

CMA-ES

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
22

Caution: must use mean m(t) of “old“ selected parents; not „new“ mean m(t+1) !
⇒ Seeking covariance matrix of fictitious distribution pointing in gradient direction!

Lecture 07

State-of-the-art: CMA-EA (currently many variants)

→ many successful applications in practice

available in WWW:

• http://cma.gforge.inria.fr/cmaes_sourcecode_page.html

• http://image.diku.dk/shark/ (EAlib, C++)

• …

CMA-ES

C, C++, Java
Fortran, Python,
Matlab, R, Scilab

G. Rudolph: Computational Intelligence ▪ Winter Term 2020/21
23

advice:
before designing your own new method
or grabbing another method with some fancy name ...
try CMA-ES − it is available in most software libraries and often does the job!

