technische universität dortmund		Plan for Today	Lecture 07	
Computational Intelligence Winter Term 2020/21		 Design of Evolutionary Algorithms Case Study: Integer Search Space Towards CMA-ES 		
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund				
			G Budolph: Computational Intelligence • Winter Term 202	
		dortmund		
Design of Evolutionary Algorithms	Lecture 07	Design of Evolutionary Algorit	hms Lecture 07	
Design of Evolutionary Algorithms ad 2) design guidelines for variation operators in pra	Lecture 07 ctice	Design of Evolutionary Algorith ad 2) design guidelines for variat	hms Lecture 07 tion operators in practice X = Z ⁿ	
Design of Evolutionary Algorithms ad 2) design guidelines for variation operators in pra integer search space X = Z ⁿ	Lecture 07 ctice	Design of Evolutionary Algorith ad 2) design guidelines for variat task: find (symmetric) maximum er	bits Lecture 07 tion operators in practice $X = Z^n$ htropy distribution over Z with $E[Z] = \theta > 0$	
Design of Evolutionary Algorithms ad 2) design guidelines for variation operators in pra integer search space X = Z ⁿ a) reachability b) unbiasedness c) control	Lecture 07 ctice very recombination results some $z \in Z^n$ nutation of z may then lead o any $z^* \in Z^n$ with positive robability in one step	Design of Evolutionary Algoriti ad 2) design guidelines for variat task: find (symmetric) maximum en \Rightarrow need <u>analytic</u> solution of an ∞ -di with constraints! H(p) = - k s.t. $p_k = p$	tion operators in practice $X = Z^n$ http://www.ntermators.com/putational intelligence with $E[Z] = \theta > 0$ intropy distribution over Z with $E[Z] = \theta > 0$ immensional, nonlinear optimization problem $\sum_{k=-\infty}^{\infty} p_k \log p_k \longrightarrow \max!$ $k \forall k \in Z, \qquad (symmetry w.r.t. 0)$	
Design of Evolutionary Algorithms ad 2) design guidelines for variation operators in pra integer search space X = Z ⁿ a) reachability b) unbiasedness c) control a) support of mutation should be Z ⁿ	Lecture 07 ctice very recombination results some $z \in \mathbb{Z}^n$ nutation of z may then lead o any $z^* \in \mathbb{Z}^n$ with positive robability in one step	Design of Evolutionary Algorith ad 2) design guidelines for variant task: find (symmetric) maximum en \Rightarrow need <u>analytic</u> solution of an ∞ -di with constraints! H(p) = - s.t. $p_k = p$ $\sum_{k=1}^{\infty} p_k = 1$,	tion operators in practice $X = Z^n$ http://www.international.com/international.co	
Design of Evolutionary Algorithms ad 2) design guidelines for variation operators in pra integer search space X = Z ⁿ a) reachability b) unbiasedness c) control ad a) support of mutation should be Z ⁿ ad b) need maximum entropy distribution over support Z	Lecture 07 ctice very recombination results some $z \in \mathbb{Z}^n$ some $z \in \mathbb{Z}^n$ with positive robability in one step	Design of Evolutionary Algorith ad 2) design guidelines for variant task: find (symmetric) maximum en \Rightarrow need <u>analytic</u> solution of an ∞ -di with constraints! H(p) = - s.t. $p_k = p$ $\sum_{k=-\infty}^{\infty} p_k = 1$,	tion operators in practice $X = Z^n$ thropy distribution over Z with $E[Z] = \theta > 0$ imensional, nonlinear optimization problem $\sum_{k=-\infty}^{\infty} p_k \log p_k \longrightarrow \max!$ $k \forall k \in Z, \qquad (symmetry w.r.t. 0)$ $(normalization)$	
Design of Evolutionary Algorithms ad 2) design guidelines for variation operators in pra integer search space X = Z ⁿ a) reachability b) unbiasedness c) control ad a) support of mutation should be Z ⁿ ad b) need maximum entropy distribution over support Z ⁿ ad c) control variability by parameter	Lecture 07 ctice very recombination results some $z \in \mathbb{Z}^n$ nutation of z may then lead o any $z^* \in \mathbb{Z}^n$ with positive robability in one step	Design of Evolutionary Algorith ad 2) design guidelines for variant task: find (symmetric) maximum en \Rightarrow need <u>analytic</u> solution of an ∞ -di with constraints! H(p) = - s.t. $p_k = p$ $\sum_{k=-\infty}^{\infty} p_k = 1$, $\sum_{k=-\infty}^{\infty} k p_k = \theta$	tion operators in practice $X = Z^n$ thropy distribution over Z with $E[Z] = \theta > 0$ imensional, nonlinear optimization problem $\sum_{k=-\infty}^{\infty} p_k \log p_k \longrightarrow \max!$ $k \forall k \in Z, \qquad (symmetry w.r.t. 0)$ $(normalization)$ $(control "spread")$	

Design of Evolutionary Algorithms

technische universität

dortmund

Lecture 07

G. Rudolph: Computational Intelligence - Winter Term 2020/21

Design of Evolutionary Algorithms

Lecture 07

tu technische universität dortmund

7

Towards CMA-ES

Lecture 07

claim: mutations should be aligned to isolines of problem (Schwefel 1981)

since then many proposals how to adapt the covariance matrix

 \Rightarrow extreme case: use n+1 pairs (x, f(x)),

apply multiple linear regression to obtain estimators for A, b, c

invert estimated matrix A! OK, but: O(n⁶)! (Rudolph 1992)

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2020

Lecture 07

Towards CMA-ES

Towards CMA-ESLecture 07
$$Z = rQu, A = B^{B}, B = Q^{-1}$$
 $f(x + rQu) = \frac{1}{2}(x + rQu)'A(x + rQu) + b'(x + rQu) + c$ $= \frac{1}{2}(x + rQu)'A(x + rQu) + b'(x + rQu) + c$ $f(x + rQu) = \frac{1}{2}(x'Ax + 2rx'AQu + r^{2}u'Q'AQu) + b'x + rb'Qu + c$ $= \frac{1}{2}(x'Ax + 2rx'AQu + r^{2}u'Q'AQu) + b'x + rb'Qu + c$ $= f(x) + rx'AQu + rb'Qu + \frac{1}{2}r^{2}u'Q'AQu$ $= f(x) + r(\Delta x + b + \frac{r}{2}AQu)'Qu$ $= f(x) + r(\nabla f(x) + \frac{r}{2}AQu)'Qu$ $= f(x) + r(\nabla f(x) + \frac{r}{2}u'Q'AQu$ $= f(x) + r\nabla f(x)'Qu + \frac{r^{2}}{2}u'Q'AQu$ $= da_{i} + \beta B$ symmetric. $b)$ A positive definite and B be quadratic matrices and $\alpha, \beta > 0$. $a)$ $a)$ A, B symmetric, since $c_{ij} = \alpha a_{ij} + \beta b_{ij} = \alpha a_{ji} + \beta b_{ji} = c_{ji}$ ad $C = \alpha A + \beta B$ symmetric, since $c_{ij} = \alpha a_{ij} + \beta b_{ij} = \alpha a_{ji} + \beta b_{ji} = c_{ji}$ ad $b \forall x \in \mathbb{R}^{n} \setminus \{0\}$: $x'(\alpha A + \beta B) x = \alpha x'Ax + (\beta x Bx > 0)$ $b \forall x \in \mathbb{N}^{n} \setminus \{0\}$: $x'(\alpha A + \beta B) x = \alpha x'Ax + (\beta x Bx > 0)$ $b \forall x = 0^{n} \log t^{n} = 0$ $b \forall x \in \mathbb{N}^{n} \log t^{n} = 0$

Towards CMA-ES	Lecture 07	CMA-ES	Lecture 07
Theorem A quadratic matrix $C^{(k)}$ is symmetric and positive definite if it is built via the iterative formula $C^{(k+1)} = \alpha_k C^{(k)} + \beta_k v$ where $C^{(0)} = I_n$, $v_k \neq 0$, $\alpha_k > 0$ and liminf $\beta_k > 0$.	for all k ≥ 0, ′ _k V' _k	Idea: Don't estimate matrix C in each iteration! Inste \rightarrow Covariance Matrix Adaptation Evolutionary Algorithms	ad, approximate <u>iteratively</u> ! _(Hansen, Ostermeier et al. 1996ff.) thm (CMA-EA)
Proof: If $v \neq 0$, then matrix $V = vv^{\epsilon}$ is symmetric and positive set • as per definition of the dyadic product $v_{ij} = v_i \cdot v_j = v_j \cdot v_j$ • for all $x \in \mathbb{R}^n : x^{\epsilon} (vv^{\epsilon}) x = (x^{\epsilon}v) \cdot (v^{\epsilon}x) = (x^{\epsilon}v)^2 \ge 0$. Thus, the sequence of matrices $v_k v_k^{\epsilon}$ is symmetric and p Owing to the previous lemma matrix $C^{(k+1)}$ is symmetric as $C^{(k)}$ is symmetric as well as p.d. and matrix $v_k v_k^{\epsilon}$ is symmetric	midefinite, since $v_i = v_{ji}$ for all i, j and b.s.d. for $k \ge 0$. and p.d., if netric and p.s.d.	Set initial covariance matrix to $C^{(0)} = I_n$ $C^{(t+1)} = (1-\eta) C^{(t)} + \eta \sum_{i=1}^{\mu} w_i (x_{i:\lambda} - m^{(t)}) (x_{i:\lambda} - m^{(t)})^i$ $m = \frac{1}{\mu} \sum_{i=1}^{\mu} x_{i:\lambda}$ mean of all <u>selected</u> parents sorting: $f(x_{1:\lambda}) \le f(x_{2:\lambda}) \le \le f(x_{\lambda:\lambda})$	$\label{eq:gamma_state} \begin{array}{l} \eta & : \text{``learning rate''} \in (0,1) \\ w_i : \text{ weights; mostly } 1/\mu \\ \\ \hline \\ \text{complexity:} \\ \textbf{O}(\mu n^2 + n^3) \end{array}$
Since $C^{(0)} = I_n$ symmetric and p.d. it follows that $C^{(1)}$ is sy Repetition of these arguments leads to the statement of	rmmetric and p.d. the theorem. ■	Caution: must use mean $m^{(t)}$ of "old" selected parents; <u>not</u> "new" mean $m^{(t+1)}$! \Rightarrow Seeking covariance matrix of fictitious distribution pointing in gradient direction!	
U technische universität G. Rudolph: Cor dortmund	mputational Intelligence • Winter Term 2020/21 21	technische universität G. Rudolph dortmund	: Computational Intelligence • Winter Term 2020/21 22

