Computational Intelligence

Winter Term 2020/21

Prof. Dr. Günter Rudolph
Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

- Design of Evolutionary Algorithms
- Case Study: Integer Search Space
- Towards CMA-ES

Design of Evolutionary Algorithms

ad 2) design guidelines for variation operators in practice
integer search space $X=Z^{n}$
a) reachability
b) unbiasedness
c) control
ad a) support of mutation should be Z^{n}
ad b) need maximum entropy distribution over support $\mathrm{Z}^{\text {n }}$
ad c) control variability by parameter
\rightarrow formulate as constraint of maximum entropy distribution

Design of Evolutionary Algorithms

ad 2) design guidelines for variation operators in practice
task: find (symmetric) maximum entropy distribution over Z with $E[|Z|]=\theta>0$
\Rightarrow need analytic solution of an ∞-dimensional, nonlinear optimization problem with constraints!

$$
H(p)=-\sum_{k=-\infty}^{\infty} p_{k} \log p_{k} \quad \longrightarrow \max !
$$

s.t.

$$
\begin{aligned}
p_{k} & =p_{-k} \quad \forall k \in \mathbb{Z}, \\
\sum_{k=-\infty}^{\infty} p_{k} & =1 \\
\sum_{=-\infty}^{\infty}|k| p_{k} & =\theta \\
p_{k} & \geq 0 \quad \forall k \in \mathbb{Z} .
\end{aligned}
$$

(symmetry w.r.t. 0)
(normalization)

$$
\sum^{\infty}|k| p_{k}=\theta
$$

(nonnegativity)

Design of Evolutionary Algorithms

result:
a random variable Z with support Z and probability distribution
$p_{k}:=P\{Z=k\}=\frac{q}{2-q}(1-q)^{|k|}, k \in \mathbb{Z}, q \in(0,1)$
symmetric w.r.t. 0 , unimodal, spread manageable by q and has max. entropy
generation of pseudo random numbers:

$$
Z=G_{1}-G_{2}
$$

where

$$
U_{i} \sim U(0,1) \Rightarrow G_{i}=\left\lfloor\frac{\log \left(1-U_{i}\right)}{\log (1-q)}\right\rfloor \quad, i=1,2
$$

stochastic independent!

Design of Evolutionary Algorithms

probability distributions for different mean step sizes $\mathrm{E}|\mathrm{Z}|=\boldsymbol{\theta}$

Design of Evolutionary Algorithms

probability distributions for different mean step sizes $\mathrm{E}|\mathrm{Z}|=\boldsymbol{\theta}$

Design of Evolutionary Algorithms

How to control the spread?

We must be able to adapt $q \in(0,1)$ for generating Z with variable $E|Z|=\theta$!
self-adaptation of q in open interval $(0,1)$?
\longrightarrow make mean step size $E[|Z|]$ adjustable!

$$
\begin{array}{cl}
E[|Z|]=\sum_{k=-\infty}^{\infty}|k| p_{k}=\theta=\frac{2(1-q)}{q(2-q)} \Leftrightarrow & q=1-\frac{\theta}{\left(1+\theta^{2}\right)^{1 / 2}+1} \\
& \downarrow \mathrm{R}_{+} \\
& \in(0,1) \\
\rightarrow \theta \text { adjustable by mutative self adaptation } & \rightarrow \text { get q from } \theta
\end{array}
$$

like mutative step size size control of σ in EA with search space \mathbb{R}^{n} !

Design of Evolutionary Algorithms

Mutative Step Size Control

Individual $(x, \theta) \in \mathbb{Z}^{n} \times \mathbb{R}_{+}$

First, mutate step size $\quad \theta_{t+1}=\theta_{t} \cdot L$
Second, mutate parent $\quad Y=x+\theta_{t+1} \cdot Z$

Often: assure minimal step size ≥ 1
$\theta_{t+1}=\max \left\{1, \theta_{t} \cdot L\right\}$
\rightarrow invented: Schwefel (1977) for real variables
\rightarrow transferred: Rudolph (1994) for integer variables
where $L=\exp (N)$ with $N \sim N(0,1 / n)$

log-normal distributed
$P\{L>c\}=P\{L<1 / c\}$ for $c \geq 1$

Design of Evolutionary Algorithms

\mathbf{n} - dimensional generalization

Design of Evolutionary Algorithms

\mathbf{n} - dimensional generalization

$$
P\left\{Z_{i}=k\right\}=\frac{q}{2-q}(1-q)^{|k|}
$$

$P\left\{Z_{1}=k_{1}, Z_{2}=k_{2}, \ldots, Z_{n}=k_{n}\right\}=\prod_{i=1}^{n} P\left\{Z_{i}=k_{i}\right\}=$

$$
\left(\frac{q}{2-q}\right)^{n} \prod_{i=1}^{n}(1-q)^{\left|k_{i}\right|}=\left(\frac{q}{2-q}\right)^{n}(1-q)^{\sum_{i=1}^{n}\left|k_{i}\right|}
$$

$$
=\left(\frac{q}{2-q}\right)^{n}(1-q)^{\|k\|_{1}}
$$

$\Rightarrow \mathrm{n}$-dimensional distribution is symmetric w.r.t. ℓ_{1} norm!
\Rightarrow all random vectors with same step length have same probability!

Design of Evolutionary Algorithms

How to control $\mathrm{E}\left[\left|\mid \mathrm{Z} \mathrm{||} \|_{1}\right.\right.$?

$$
\begin{aligned}
& E\left[\|Z\|_{1}\right]=E\left[\sum_{i=1}^{n}\left|Z_{i}\right|\right]=\sum_{i=1}^{n} E\left[\left|Z_{i}\right|\right]=n \cdot E\left[\left|Z_{1}\right|\right] \\
& \underbrace{n \cdot E\left[\left|Z_{1}\right|\right]}_{\text {by def. }}=n \cdot \frac{2(1-q)}{q(2-q)} \Leftrightarrow q=1-\frac{\theta / n}{\left(1+(\theta / n)^{2}\right)^{1 / 2}+1}
\end{aligned} \underbrace{\text { identical distributions for } Z_{i}}_{\text {self-adaptation of } E[\cdot]} \quad \begin{aligned}
& \text { calculate from } \theta
\end{aligned}
$$

Design of Evolutionary Algorithms

Algorithm:

individual
$:(x, \theta) \in \mathbb{Z}^{n} \times \mathbb{R}_{+}$
mutation
$: \theta^{(t+1)}=\theta^{(t)} \cdot \exp (N), \quad N \sim N(0,1 / n)$.
if $\theta^{(t+1)}<1$ then $\theta_{t+1}=1$
calculate new q for G_{i} from θ_{t+1}
$\forall j=1, \ldots, n: X_{j}^{(t+1)}=X_{j}^{(t)}+\left(G_{1, j}-G_{2, j}\right)$
recombination : discrete (uniform crossover)
selection
: (μ, λ)-selection

Design of Evolutionary Algorithms

Example: $(1, \lambda)$-EA with $\lambda=10 ; f(x)=x^{\prime} x \rightarrow \min !; n=10$

```
\(\mathrm{X}^{(0)} \in[100,101]^{n} \cap \mathbb{Z}^{n}\)
\(X^{(0)} \in[10000,10100]^{n} \cap \mathbb{Z}^{n}\)
\(\theta_{0}=50000\)
\(\theta_{0}=5\)
```

initial step size θ_{0} too large

initial step size θ_{0} too small

Excursion: Maximum Entropy Distributions Lecture 07

ad 2) design guidelines for variation operators in practice
continuous search space $X=R^{n}$
a) reachability
b) unbiasedness
c) control
\Rightarrow leads to CMA-ES !
\downarrow
Covariance
Matrix
Adaptation
mutation: $\mathrm{Y}=\mathrm{X}+\mathrm{Z} \quad \mathrm{Z} \sim \mathrm{N}(0, \mathrm{C})$ multinormal distribution

maximum entropy distribution for support R^{n}, given expectation vector and covariance matrix
how should we choose covariance matrix C ?
unless we have not learned something about the problem during search
\Rightarrow don't prefer any direction!
\Rightarrow covariance matrix $C=I_{n}$ (unit matrix)

$$
C=I_{n} \quad C=\operatorname{diag}\left(s_{1}, \ldots, S_{n}\right) \quad C \text { orthogonal }
$$

Towards CMA-ES

claim: mutations should be aligned to isolines of problem (Schwefel 1981)

if true then covariance matrix should be inverse of Hessian matrix!
\Rightarrow assume $\mathrm{f}(\mathrm{x}) \approx 1 / 2 \mathrm{x}^{\prime} \mathrm{Ax}+\mathrm{b}^{\mathrm{x}} \mathrm{x}+\mathrm{c} \quad \Rightarrow \mathrm{H}=\mathrm{A}$
$\mathrm{Z} \sim \mathrm{N}(0, C)$ with density
$f_{Z}(x)=\frac{1}{(2 \pi)^{n / 2}|C|^{1 / 2}} \exp \left(-\frac{1}{2} x^{\prime} C^{-1} x\right)$
since then many proposals how to adapt the covariance matrix
\Rightarrow extreme case: use $\mathrm{n}+1$ pairs ($\mathrm{x}, \mathrm{f}(\mathrm{x})$), apply multiple linear regression to obtain estimators for $\mathrm{A}, \mathrm{b}, \mathrm{c}$ invert estimated matrix A! OK, but: $\mathrm{O}\left(\mathrm{n}^{6}\right)$! (Rudolph 1992)

Towards CMA-ES

doubts: are equi-aligned isolines really optimal?

principal axis
should point into negative gradient direction!
(proof next slide)

most (effective) algorithms behave like this:
run roughly into negative gradient direction, sooner or later we approach longest main principal axis of Hessian, now negative gradient direction coincidences with direction to optimum, which is parallel to longest main principal axis of Hessian, which is parallel to the longest main principal axis of the inverse covariance matrix

$$
\begin{aligned}
\mathrm{Z}=\mathrm{rQu}, \mathrm{~A}= & \mathrm{B}^{\prime} \mathrm{B}, \mathrm{~B}=\mathrm{Q}^{-1} \\
f(x+r Q u) & =\frac{1}{2}(x+r Q u)^{\prime} A(x+r Q u)+b^{\prime}(x+r Q u)+c \\
& =\frac{1}{2}\left(x^{\prime} A x+2 r x^{\prime} A Q u+r^{2} u^{\prime} Q^{\prime} A Q u\right)+b^{\prime} x+r b^{\prime} Q u+c \\
& =f(x)+r x^{\prime} A Q u+r b^{\prime} Q u+\frac{1}{2} r^{2} u^{\prime} Q^{\prime} A Q u \\
& =f(x)+r\left(A x+b+\frac{r}{2} A Q u\right)^{\prime} Q u \\
& =f(x)+r\left(\nabla f(x)+\frac{r}{2} A Q u\right)^{\prime} Q u \\
& =f(x)+r \nabla f(x)^{\prime} Q u+\frac{r^{2}}{2} u^{\prime} Q^{\prime} A Q u \\
& =f(x)+r \nabla f(x) Q u+\frac{r^{2}}{2} \quad \rightarrow \text { min! }
\end{aligned}
$$

if Qu were deterministic ...
\Rightarrow set $\mathrm{Qu}=-\nabla \mathrm{f}(\mathrm{x}) \quad$ (direction of steepest descent)

Towards CMA-ES

Apart from (inefficient) regression, how can we get matrix elements of Q ?
\Rightarrow iteratively: $\quad \mathrm{C}^{(k+1)}=$ update $\left(\mathrm{C}^{(k)}\right.$, Population $\left.{ }^{(k)}\right)$
basic constraint: $\mathrm{C}^{(k)}$ must be positive definite (p.d.) and symmetric for all $\mathrm{k} \geq 0$, otherwise Cholesky decomposition impossible: C = Q‘Q

Lemma

Let A and B be quadratic matrices and $\alpha, \beta>0$.
a) A, B symmetric $\Rightarrow \alpha A+\beta B$ symmetric.
b) A positive definite and B positive semidefinite $\Rightarrow \alpha A+\beta B$ positive definite

```
Proof:
ad a) \(C=\alpha A+\beta B\) symmetric, since \(c_{i j}=\alpha a_{i j}+\beta b_{i j}=\alpha a_{j i}+\beta b_{j i}=c_{j i}\)
ad b) \(\forall x \in R^{n} \backslash\{0\}: x^{\prime}(\alpha A+\beta B) x=\underbrace{\alpha x^{\prime} A x}_{>0}+\underbrace{\beta x^{\prime} B x}_{\geq 0}>0\)
```


Towards CMA-ES

Theorem

A quadratic matrix $\mathrm{C}^{(k)}$ is symmetric and positive definite for all $\mathrm{k} \geq 0$,
if it is built via the iterative formula $\mathbf{C}^{(k+1)}=\alpha_{k} \mathbf{C}^{(k)}+\beta_{k} \mathbf{v}_{\mathbf{k}} \mathbf{v}^{\mathrm{k}}$
where $C^{(0)}=I_{n}, v_{k} \neq 0, \alpha_{k}>0$ and liminf $\beta_{k}>0$.

Proof:

If $v \neq 0$, then matrix $V=v v^{\prime}$ is symmetric and positive semidefinite, since

- as per definition of the dyadic product $v_{i j}=v_{i} \cdot v_{j}=v_{j} \cdot v_{i}=v_{j i}$ for all i, j and
- for all $x \in R^{n}: x^{\prime}\left(v^{\prime}\right) x=\left(x^{\prime} v\right) \cdot\left(v^{\prime} x\right)=\left(x^{\prime} v\right)^{2} \geq 0$.

Thus, the sequence of matrices $v_{k} v_{k}^{\prime}$ is symmetric and p.s.d. for $k \geq 0$.
Owing to the previous lemma matrix $\mathrm{C}^{(k+1)}$ is symmetric and p.d., if
$C^{(k)}$ is symmetric as well as p.d. and matrix $v_{k} v_{k}$ is symmetric and p.s.d.
Since $C^{(0)}=I_{n}$ symmetric and p.d. it follows that $C^{(1)}$ is symmetric and p.d.
Repetition of these arguments leads to the statement of the theorem.

CMA-ES

Idea: Don't estimate matrix C in each iteration! Instead, approximate iteratively!
(Hansen, Ostermeier et al. 1996ff.)
\rightarrow Covariance Matrix Adaptation Evolutionary Algorithm (CMA-EA)

Set initial covariance matrix to $\mathrm{C}^{(0)}=\mathrm{I}_{\mathrm{n}}$
$C^{(t+1)}=(1-\eta) C^{(t)}+\eta \sum_{i=1}^{\mu} w_{i}\left(x_{i: \lambda}-m^{(t)}\right)\left(x_{i: \lambda}-m^{(t)}\right)^{t}$
η : "learning rate" $\in(0,1)$
w_{i} : weights; mostly $1 / \mu$
$\mathrm{m}=\frac{1}{\mu} \sum_{i=1}^{\mu} x_{i: \lambda} \quad$ mean of all selected parents
sorting: $\mathrm{f}\left(\mathrm{x}_{1: \lambda}\right) \leq \mathrm{f}\left(\mathrm{x}_{2: \lambda}\right) \leq \ldots \leq \mathrm{f}\left(\mathrm{x}_{\text {: }}\right)$

Caution: must use mean $\mathrm{m}^{(t)}$ of "old" selected parents; $\underline{\text { not } \text {,new" mean } \mathrm{m}^{(t+1)} \text { ! }}$
\Rightarrow Seeking covariance matrix of fictitious distribution pointing in gradient direction!

CMA-ES

State-of-the-art: CMA-EA (currently many variants)
\rightarrow many successful applications in practice

C, C++, Java

Fortran, Python, Matlab, R, Scilab
available in WWW:

- http://cma.gforge.inria.fr/cmaes_sourcecode_page.html
- http://image.diku.dk/shark/
(EAlib, C++)
advice:
before designing your own new method
or grabbing another method with some fancy name ...
try CMA-ES - it is available in most software libraries and often does the job!

