

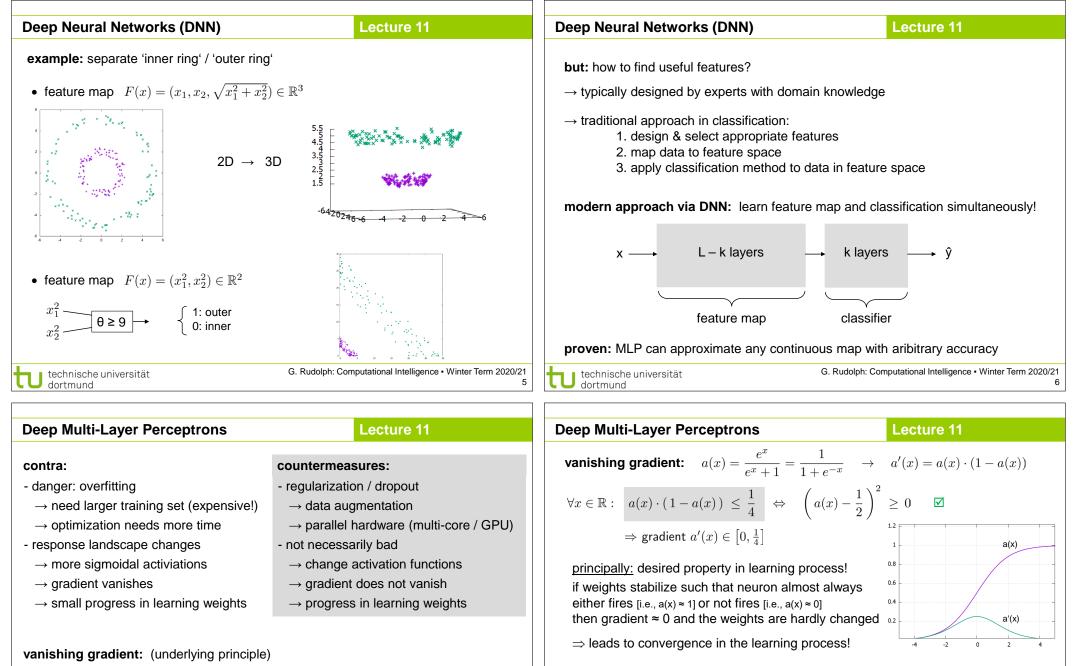
technische universität

dortmund

H 1	technische universität
	dortmund

G. Rudolph: Computational Intelligence • Winter Term 2020/21

4



forward pass

backward pass

dortmund

technische universität

 $y = f_3(f_2(f_1(x; w_1); w_2); w_3)$

 $(f_3(f_2(f_1(x; w_1); w_2); w_3))) =$

 $f_3'(f_2(f_1(x;w_1);w_2);w_3) \cdot f_2'(f_1(x;w_1);w_2) \cdot f_1'(x;w_1)$

 \rightarrow repeated multiplication of values in (0,1) \rightarrow 0

 $f_i \approx activation function$

G. Rudolph: Computational Intelligence - Winter Term 2020/21

chain rule!

7

while learning, updates of weights via partial derivatives:

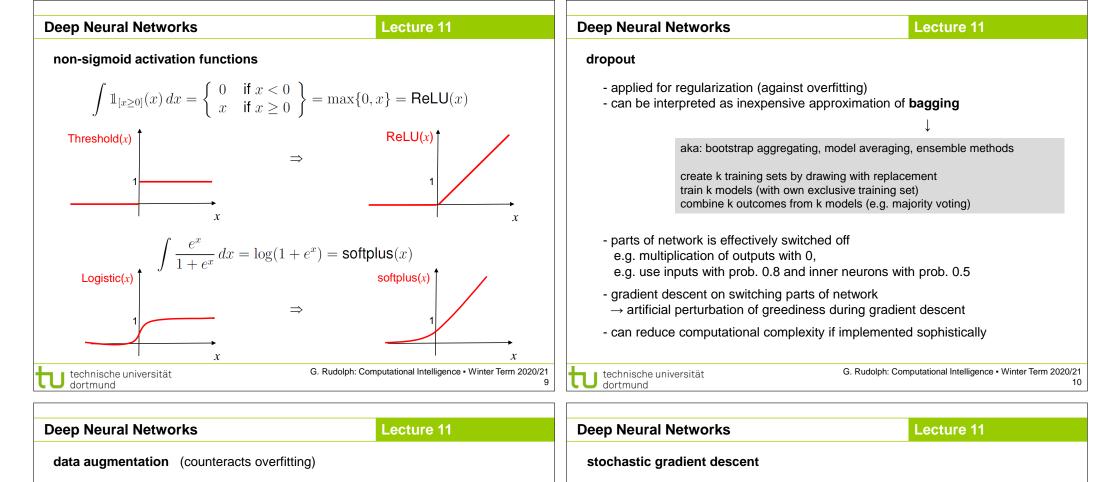
$$\frac{\partial f(w, u; x, z^*)}{\partial w_{ij}} = 2 \sum_{k=1}^{K} [a(u'_k y) - z^*_k] \cdot \underbrace{a'(u'_k y)}_{\leq \frac{1}{4}} \cdot \underbrace{u_{jk} \cdot a'(w'_j x)}_{\leq \frac{1}{4}} \cdot x_i \quad \text{(L= 2 layers)}$$

$$\Rightarrow \text{ in general } f_{w_{ij}} = O(4^{-L}) \to 0 \text{ as } L^{\uparrow} \quad L < 3; \text{ effect neglectable; but } L \gg 3 \text{ layers}$$

technische universität

dortmund

G. Rudolph: Computational Intelligence • Winter Term 2020/21



- \rightarrow extending training set by slightly perturbed true training examples
- best applicable if inputs are **images**: translate, rotate, add noise, resize, ...

original image

rotated

resized

noisv + rotated

11

if x is real vector then adding e.g. small gaussian noise \rightarrow here, utility disputable (artificial sample may cross true separating line)

extra costs for acquiring additional annotated data are inevitable!

technische universität dortmund

G. Rudolph: Computational Intelligence - Winter Term 2020/21

- search in subspaces \rightarrow counteracts greediness \rightarrow better generalization accelerates optimization methods (parallelism possible) choice of batch size b \Rightarrow better approximation of gradient b large

partitioning of training set B into (mini-) batches of size b

b = 1

b = |B|

b small \Rightarrow better generalization

traditionally: 2 extreme cases

- after each training example

- after all training examples

update of weights

b also depends on available hardware b too small \Rightarrow multi-cores underemployed

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2020/21 12

often $b \approx 100$ (empirically)

now:

update of weights

- after b training examples

where 1 < b < |B|

Deep Neural Networks Lecture 11 **Deep Neural Networks** cost functions cost functions • regression • classification N training samples (x_i, y_i) where $y_i \in \{1, ..., C\}$, C = #classes N training samples (x_i, y_i) insist that $f(x_i; \theta) = y_i$ for i=1,..., N \rightarrow want to estimate probability of different outcomes for unknown sample if $f(x; \theta)$ linear in θ then $\theta^T x_i = y_i$ for i=1,..., N or $X \theta = y$ \rightarrow decision rule: choose class with highest probability (given the data) \Rightarrow best choice for θ : least square estimator (LSE) idea: use maximum likelihood estimator (MLE) \Rightarrow (X θ - y)^T (X θ - y) \rightarrow min!

G. Rudolph: Computational Intelligence - Winter Term 2020/21

= estimate unknown parameter θ such that likelihood of sample $x_1, ..., x_N$ gets maximal as a function of θ

likelihood function $\overline{L(\theta; x_1, \dots, x_N)} := f_{X_1, \dots, X_N}(x_1, \dots, x_N; \theta) = \prod_{i=1}^n f_X(x_i; \theta) \to \max_{\theta}!$

technische universität J dortmund

13

15

G. Rudolph: Computational Intelligence • Winter Term 2020/21 14

Lecture 11

Lecture 11

Deep Neural Networks Lecture 11	Deep Neural
here : random variable $X \in \{1,, C\}$ with P{ X = i } = q _i (true, but unknown)	in case of <i>clas</i>
\rightarrow we use relative frequencies of training set $x_1,, x_N$ as estimator of q_i	
$\hat{q}_i = rac{1}{N} \sum_{i=1}^N \mathbb{1}_{[x_j=i]} \Rightarrow$ there are $N \cdot \hat{q}_i$ samples of class i in training set	use softr
j=1	\rightarrow multicl
\Rightarrow the neural network should output \hat{p} as close as possible to \hat{q} ! [actually: to q]	\rightarrow class v
likelihood $L(\hat{p}; x_1, \dots, x_N) = \prod_{k=1}^N P\{X_k = x_k\} = \prod_{i=1}^C \hat{p}_i^{N \cdot \hat{q}_i} \to \max!$ $\log L = \log\left(\prod_{i=1}^C \hat{p}_i^{N \cdot \hat{q}_i}\right) = \sum_{i=1}^C \log \hat{p}_i^{N \cdot \hat{q}_i} = N \underbrace{\sum_{i=1}^C \hat{q}_i \cdot \log \hat{p}_i}_{-H(\hat{q},\hat{p})} \to \max!$	→ decisio
\Rightarrow maximizing $\log L$ leads to same solution as minimizing cross-entropy $H(\hat{q}, \hat{p})$	

in case of MLP: $f(x; \theta)$ is nonlinear in θ

 $\Rightarrow \sum_{i} (f(\mathbf{x}_{i}; \theta) - \mathbf{y}_{i})^{2} \rightarrow \min_{\theta}!$

technische universität

technische universität

dortmund

dortmund

 \Rightarrow best choice for θ : (nonlinear) least square estimator; aka TSSE

Networks

ssification

technische universität

dortmund

tmax function $P\{y = j \mid x\} = \frac{e^{w_j^T x + b_j}}{\sum_{i=1}^{C} e^{w_i^T x + b_i}}$ in output layer

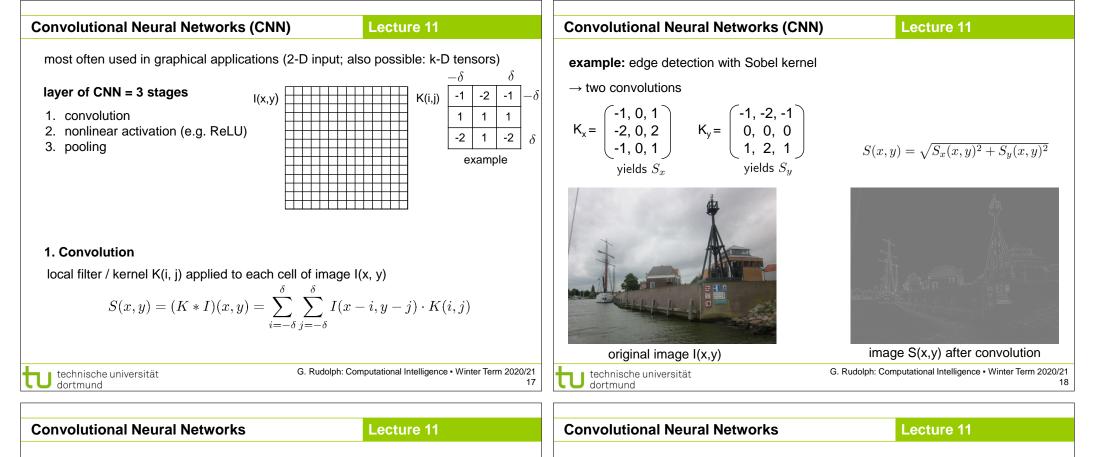
class classification: probability of membership to class j = 1, ..., C

with maximum excitation w'x+b has maximum probability

ion rule: element x is assigned to class with maximum probability

16

G. Rudolph: Computational Intelligence - Winter Term 2020/21



filter / kernel					
well known in image processing; typically hand-crafted!	1	1	1	1	
here: values of filter matrix learnt in CNN !		1	1	1 1 -1 -1	
actually: many filters active in CNN		-1	-1	-1	
	-1	-1	-1	-1	J
e.g. horizontal line detection					
stride					
= distance between two applications of a filter (horizontal s_h / vertical s_v)					
\rightarrow leads to smaller images if s _h or s _v > 1					

padding

- = treatment of border cells if filter does not fit in image
- "valid" : apply only to cells for which filter fits \rightarrow leads to smaller images
- "same": add rows/columns with zero cells; apply filter to all cells (\rightarrow same size)

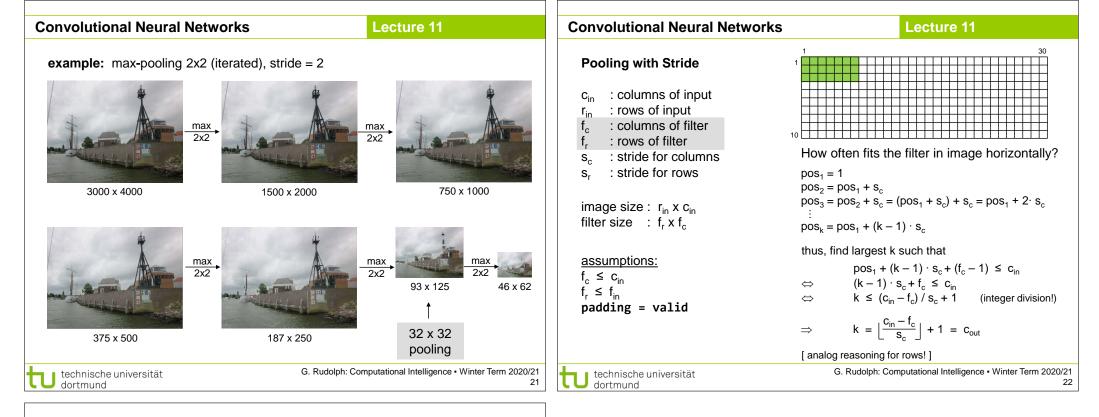
technische universität dortmund

 $a(x) = ReLU(x^T W + c)$ 3. pooling in principle: summarizing statistic of nearby outputs

e.g. **max-pooling** $m(i,j) = max(l(i+a, j+b) : a,b = -\delta, ..., 0, ..., \delta)$ for $\delta > 0$

- also possible: mean, median, matrix norm, ...
- can be used to reduce matrix / output dimensions

2. nonlinear activation



23

Convolutional Neural Networks

Lecture 11

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts
- flatten layer (\rightarrow converts k-D matrix to 1-D matrix required for MLP input layer) -
- fully connected MLP

examples:

