

Computational Intelligence

Winter Term 2021/22

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Lecture 01 **Fuzzy Systems: Introduction**

Observation:

Communication between people is not precise but somehow fuzzy and vague.

"If the water is too hot then add a little bit of cold water."

Despite these shortcomings in human language we are able

- to process fuzzy / uncertain information and
- to accomplish complex tasks!

Goal:

Development of formal framework to process fuzzy statements in computer.

G. Rudolph: Computational Intelligence • Winter Term 2021/22 technische universität

Plan for Today

Lecture 01

- Fuzzy Sets
 - Basic Definitions and Results for Standard Operations
 - Algebraic Difference between Fuzzy and Crisp Sets

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Fuzzy Systems: Introduction

Lecture 01

Consider the statement:

"The water is hot."

Which temperature defines "hot"?

A single temperature T = 95° C?

No! Rather, an interval of temperatures: T ∈ [70, 120]!

But who defines the limits of the intervals?

Some people regard temperatures > 60° C as hot, others already T > 50° C!

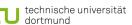
Idea: All people might agree that a temperature in the set [70, 120] defines a hot temperature!

If T = 65°C not all people regard this as hot. It does not belong to [70,120].

But it is hot to some degree.

Or: T = 65°C belongs to set of hot temperatures to some <u>degree!</u>

Can be the concept for capturing fuzziness! ⇒ Formalize this concept!



Fuzzy Sets: The Beginning ...

Lecture 01

Definition

A map F: $X \to [0,1] \subset \mathbb{R}$ that assigns its **degree of membership** F(x) to each $x \in X$ is termed a fuzzy set.

Remark:

A fuzzy set F is actually a map F(x). Shorthand notation is simply F.

Same point of view possible for traditional ("crisp") sets:

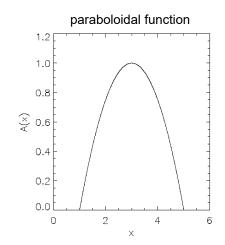
$$A(x) := \mathbf{1}_{[x \in A]} := \mathbf{1}_A(x) := \left\{ \begin{array}{l} 1 & \text{, if } x \in A \\ 0 & \text{, if } x \notin A \end{array} \right.$$

characteristic / indicator function of (crisp) set A

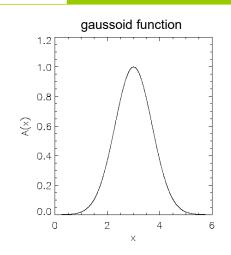
⇒ membership function interpreted as generalization of characteristic function

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Fuzzy Sets: Membership Functions Lecture 01



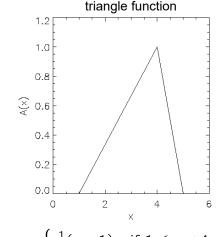
$$A(x) = \begin{cases} -\frac{(x-1)(x-5)}{4} & \text{if } 1 \le x < 5\\ 0 & \text{otherwise} \end{cases}$$



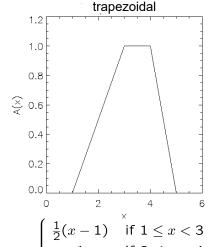
$$A(x) = \exp\left(-\frac{(x-3)^2}{2}\right)$$

Fuzzy Sets: Membership Functions

Lecture 01



$$A(x) = \begin{cases} \frac{1}{3}(x-1) & \text{if } 1 \le x < 2\\ 5-x & \text{if } 4 \le x < 5\\ 0 & \text{otherwise} \end{cases}$$



$$A(x) = \begin{cases} \frac{1}{3}(x-1) & \text{if } 1 \le x < 4 \\ 5-x & \text{if } 4 \le x < 5 \\ 0 & \text{otherwise} \end{cases} \qquad A(x) = \begin{cases} \frac{1}{2}(x-1) & \text{if } 1 \le x < 3 \\ 1 & \text{if } 3 \le x < 4 \\ 5-x & \text{if } 4 \le x < 5 \\ 0 & \text{otherwise} \end{cases}$$

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Fuzzy Sets: Basic Definitions

Lecture 01

Definition

A fuzzy set F over the crisp set X is termed

- if F(x) = 0 for all $x \in X$, a) **empty**
- if F(x) = 1 for all $x \in X$. b) *universal*

Empty fuzzy set is denoted by $\, \mathbb{O} \, .$ Universal set is denoted by $\, \mathbb{U} .$

Definition

Let A and B be fuzzy sets over the crisp set X.

- a) A and B are termed **equal**, denoted A = B, if A(x) = B(x) for all $x \in X$.
- b) A is a **subset** of B, denoted $A \subseteq B$, if $A(x) \le B(x)$ for all $x \in X$.
- c) A is a *strict subset* of B, denoted $A \subset B$, if $A \subseteq B$ and $\exists x \in X$: A(x) < B(x).

Remark: A strict subset is also called a *proper* subset.

Fuzzy Sets: Basic Relations

Lecture 01

Theorem

Let A, B and C be fuzzy sets over the crisp set X. The following relations are valid:

- a) reflexivity : $A \subseteq A$.
- b) antisymmetry : $A \subseteq B$ and $B \subseteq A \Rightarrow A = B$.
- c) transitivity : $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$.

Proof: (via reduction to definitions and exploiting operations on crisp sets)

- ad a) $\forall x \in X: A(x) \leq A(x)$.
- ad b) $\forall x \in X$: $A(x) \le B(x)$ and $B(x) \le A(x) \Rightarrow A(x) = B(x)$.
- ad c) $\forall x \in X$: $A(x) \le B(x)$ and $B(x) \le C(x) \Rightarrow A(x) \le C(x)$.

q.e.d.

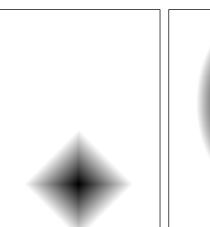
Remark: Same relations valid for crisp sets. No Surprise! Why?

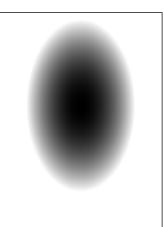
G. Rudolph: Computational Intelligence • Winter Term 2021/22

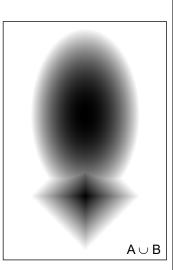
Fuzzy Sets: Standard Operations in 2D

Lecture 01

standard fuzzy union







interpretation: membership = 0 is white, = 1 is black, in between is gray

technische universität dortmund

Fuzzy Sets: Standard Operations

Lecture 01

Definition

Let A and B be fuzzy sets over the crisp set X. The set C is the

- a) union of A and B, denoted $C = A \cup B$, if $C(x) = max\{A(x), B(x)\}$ for all $x \in X$;
- b) intersection of A and B, denoted C = A \cap B, if C(x) = min{ A(x), B(x) } for all x \in X;
- c) **complement** of A, denoted $C = A^c$, if C(x) = 1 A(x) for all $x \in X$.

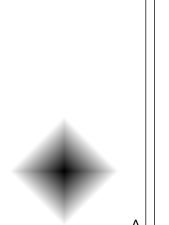


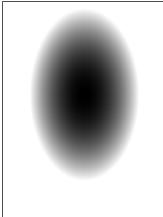
U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2021/22

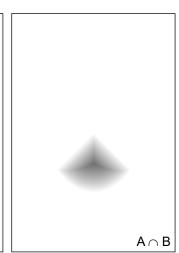
Fuzzy Sets: Standard Operations in 2D

Lecture 01

standard fuzzy intersection





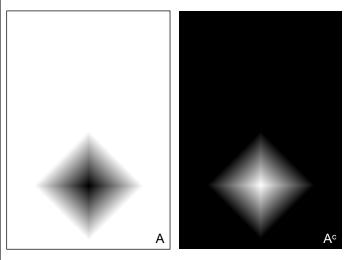


interpretation: membership = 0 is white, = 1 is black, in between is gray

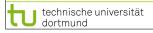
Fuzzy Sets: Standard Operations in 2D

Lecture 01

standard fuzzy complement



interpretation: membership = 0 is white, = 1 is black, in between is gray



G. Rudolph: Computational Intelligence • Winter Term 2021/22

Fuzzy Sets: Basic Definitions

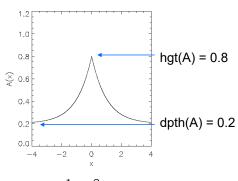
Lecture 01

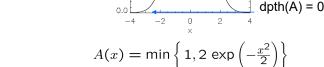
hgt(A) = 1

Definition

The fuzzy set A over the crisp set X has

- **height** hgt(A) = $\sup\{A(x) : x \in X\},\$
- b) **depth** dpth(A) = inf { A(x) : $x \in X$ }.





1.0

€ 0.6

 $A(x) = \frac{1}{5} + \frac{3}{5} \exp(-|x|)$

G. Rudolph: Computational Intelligence • Winter Term 2021/22

technische universität

Fuzzy Sets: Basic Definitions

Lecture 01

Definition

The fuzzy set A over the crisp set X is

a) **normal**

if hgt(A) = 1

strongly normal

if $\exists x \in X: A(x) = 1$

co-normal

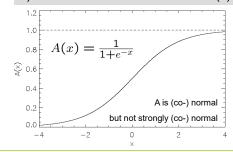
if dpth(A) = 0

strongly co-normal if $\exists x \in X$: A(x) = 0

■ technische universität

subnormal

if 0 < A(x) < 1 for all $x \in X$.



Remark:

How to normalize a non-normal fuzzy set A?

$$A^*(x) = \frac{A(x)}{\mathsf{hgt}(A)}$$

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Fuzzy Sets: Basic Definitions

Lecture 01

Definition

The *cardinality* card(A) of a fuzzy set A over the crisp set X is

$$\operatorname{card}(A) := \left\{ \begin{array}{ll} \sum\limits_{x \in X} A(x) & \text{, if X countable} \\ \\ \int\limits_X A(x) \, dx & \text{, if } X \subseteq \mathbb{R}^{\mathsf{n}} \end{array} \right.$$

Examples:

a)
$$A(x) = q^x$$
 with $q \in (0,1)$, $x \in \mathbb{N}_0$ \Rightarrow card(A) $= \sum_{x \in X} A(x) = \sum_{x=0}^{\infty} q^x = \frac{1}{1-q} < \infty$

b)
$$A(x) = 1/x$$
 with $x \in N$

b)
$$A(x) = 1/x$$
 with $x \in \mathbb{N}$ $\Rightarrow card(A) = \sum_{x \in X} A(x) = \sum_{x=1}^{\infty} \frac{1}{x} = \infty$

c)
$$A(x) = \exp(-|x|)$$
 with $x \in \mathbb{R}$

c) A(x) = exp(-|x|) with
$$x \in \mathbb{R}$$
 \Rightarrow card(A) = $\int_{x \in X} A(x) dx = \int_{x = -\infty}^{\infty} \exp(-|x|) dx = 2$

Fuzzy Sets: Basic Results

Lecture 01

Theorem

For fuzzy sets A, B and C over a crisp set X the standard union operation is

a) commutative $: A \cup B = B \cup A$

 $: A \cup (B \cup C) = (A \cup B) \cup C$ b) associative

 $: A \cup A = A$ idempotent

 $: A \subseteq B \Rightarrow (A \cup C) \subseteq (B \cup C).$ monotone

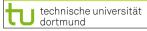
Proof: (via reduction to definitions)

ad a)
$$A \cup B = \max \{ A(x), B(x) \} = \max \{ B(x), A(x) \} = B \cup A.$$

ad b) A
$$\cup$$
 (B \cup C) = max { A(x), max{ B(x), C(x) } } = max { A(x), B(x) , C(x) } = max { max { A(x), B(x) } , C(x) } = (A \cup B) \cup C.

ad c)
$$A \cup A = \max \{ A(x), A(x) \} = A(x) = A$$
.

ad d)
$$A \cup C = \max \{A(x), C(x)\} \le \max \{B(x), C(x)\} = B \cup C \text{ since } A(x) \le B(x).$$
 q.e.d.



G. Rudolph: Computational Intelligence • Winter Term 2021/22

Fuzzy Sets: Basic Results

Lecture 01

Theorem

For fuzzy sets A, B and C over a crisp set X the standard intersection operation is

commutative $: A \cap B = B \cap A$

 $: A \cap (B \cap C) = (A \cap B) \cap C$ associative

 $: A \cap A = A$ idempotent

 $: A \subseteq B \Rightarrow (A \cap C) \subseteq (B \cap C).$ monotone

Proof: (analogous to proof for standard union operation)

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Lecture 01

Fuzzy Sets: Basic Results

Lecture 01

Theorem

For fuzzy sets A, B and C over a crisp set X there are the distributive laws

- a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof:

ad a) max { A(x), min { B(x), C(x) } } =
$$\begin{cases} max \{A(x), B(x)\} & \text{if } B(x) \le C(x) \\ max \{A(x), C(x)\} & \text{otherwise} \end{cases}$$

If $B(x) \le C(x)$ then $\max \{A(x), B(x)\} \le \max \{A(x), C(x)\}$.

 $\max \{ A(x), C(x) \} \le \max \{ A(x), B(x) \}.$ Otherwise

- ⇒ result is always the smaller max-expression
- \Rightarrow result is min { max { A(x), B(x) }, max { A(x), C(x) } } = (A \cup B) \cap (A \cup C).

ad b) analogous.

technische universität dortmund

Fuzzy Sets: Basic Results

Proof:

If A is a fuzzy set over a crisp set X then

a) $A \cup \mathbb{O} = A$

Theorem

- b) $A \cup U = U$
- c) $A \cap \mathbb{O} = \mathbb{O}$
- d) $A \cap \mathbb{U} = A$.

(via reduction to definitions)

- ad a) $\max \{ A(x), 0 \} = A(x)$
- ad b) max $\{A(x), 1\} = \mathbb{U}(x) \equiv 1$
- ad c) min $\{A(x), 0\} = \mathbb{O}(x) \equiv 0$
- ad d) min $\{A(x), 1\} = A(x)$.

Breakpoint:

So far we know that fuzzy sets with operations \cap and \cup are a <u>distributive lattice</u>. If we can show the validity of

- $(A_c)_c = A$
- A ∪ A c = U
- ⇒ Fuzzy Sets would be Boolean Algebra! Is it true? • A \cap Ac = \mathbb{O}

Fuzzy Sets: Basic Results

Lecture 01

Theorem

If A is a fuzzy set over a crisp set X then

a)
$$(A^{c})^{c} = A$$

b)
$$\frac{1}{2} \le (A \cup A^c)(x) \le 1$$
 for $A(x) \in (0,1)$

c)
$$0 < (A \cap A^c)(x) \le \frac{1}{2}$$
 for $A(x) \in (0,1)$

Remark:

Recall the identities

$$\min\{a,b\} = \frac{a+b-|a-b|}{2}$$

$$\max\{a,b\} = \frac{a+b+|a-b|}{2}$$

Proof:

ad a)
$$\forall x \in X: 1 - (1 - A(x)) = A(x)$$
.

ad b)
$$\forall x \in X$$
: max $\{A(x), 1 - A(x)\} = \frac{1}{2} + |A(x) - \frac{1}{2}| \ge \frac{1}{2}$.
Value 1 only attainable for $A(x) = 0$ or $A(x) = 1$.

ad c)
$$\forall x \in X$$
: min $\{A(x), 1 - A(x)\} = \frac{1}{2} - |A(x) - \frac{1}{2}| \le \frac{1}{2}$.
Value 0 only attainable for $A(x) = 0$ or $A(x) = 1$.

q.e.d.

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Fuzzy Sets: DeMorgan's Laws

Lecture 01

Theorem

If A and B are fuzzy sets over a crisp set X with standard union, intersection, and complement operations then **DeMorgan**'s laws are valid:

a)
$$(A \cap B)^c = A^c \cup B^c$$

b)
$$(A \cup B)^c = A^c \cap B^c$$

Proof: (via reduction to elementary identities)

ad a)
$$(A \cap B)^c(x) = 1 - \min\{A(x), B(x)\} = \max\{1 - A(x), 1 - B(x)\} = A^c(x) \cup B^c(x)$$

ad b)
$$(A \cup B)^{c}(x) = 1 - \max\{A(x), B(x)\} = \min\{1 - A(x), 1 - B(x)\} = A^{c}(x) \cap B^{c}(x)$$

q.e.d.

Question : Why restricting result above to "<u>standard</u>" operations? **Conjecture** : Most likely there also exist "<u>nonstandard</u>" operations!

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Fuzzy Sets: Algebraic Structure

Lecture 01

Conclusion:

Fuzzy sets with \cup and \cap are a distributive lattice.

But in general:

a) $A \cup A^c \neq \mathbb{U}$ \Rightarrow Fuzzy sets with \cup and \cap are **not** a Boolean algebra!

Remarks:

ad a) The law of excluded middle does not hold!

("Everything must either be or not be!")

ad b) The law of noncontradiction does not hold!

("Nothing can both be and not be!")

⇒ Nonvalidity of these laws generate the <u>desired</u> fuzziness!

but: Fuzzy sets still endowed with much algebraic structure (distributive lattice)!

U technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2021/22