Computational Intelligence

Winter Term 2021/22

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)
Fakultät für Informatik
TU Dortmund

Plan for Today

- Fuzzy Sets
- Basic Definitions and Results for Standard Operations
- Algebraic Difference between Fuzzy and Crisp Sets
dortmund

Fuzzy Systems: Introduction

Observation:

Communication between people is not precise but somehow fuzzy and vague.
"If the water is too hot then add a little bit of cold water."

Despite these shortcomings in human language we are able

- to process fuzzy / uncertain information and
- to accomplish complex tasks!

Goal:

Development of formal framework to process fuzzy statements in computer.

Fuzzy Systems: Introduction

Consider the statement: "The water is hot."

Which temperature defines "hot"?
A single temperature $\mathrm{T}=95^{\circ} \mathrm{C}$?
No! Rather, an interval of temperatures: $\mathrm{T} \in[70,120]$!
But who defines the limits of the intervals?
Some people regard temperatures $>60^{\circ} \mathrm{C}$ as hot, others already $\mathrm{T}>50^{\circ} \mathrm{C}$!

Idea: All people might agree that a temperature in the set [70, 120] defines a hot temperature!

If $\mathrm{T}=65^{\circ} \mathrm{C}$ not all people regard this as hot. It does not belong to [70,120].
But it is hot to some degree.
Or: $\mathrm{T}=65^{\circ} \mathrm{C}$ belongs to set of hot temperatures to some degree!
$\Rightarrow \quad$ Can be the concept for capturing fuzziness! \Rightarrow Formalize this concept!

Fuzzy Sets: The Beginning ...

Definition

A map $\mathrm{F}: \mathrm{X} \rightarrow[0,1] \subset \mathbb{R}$ that assigns its degree of membership $\mathrm{F}(\mathrm{x})$ to each $x \in X$ is termed a fuzzy set.

Remark:

A fuzzy set F is actually a map $F(x)$. Shorthand notation is simply F.
Same point of view possible for traditional ("crisp") sets:

$$
A(x):=1_{[x \in A]}:=1_{A}(x):= \begin{cases}1 & , \text { if } x \in A \\ 0 & , \text { if } x \notin A\end{cases}
$$

characteristic / indicator function of (crisp) set A
\Rightarrow membership function interpreted as generalization of characteristic function

Fuzzy Sets: Membership Functions

$$
A(x)=\left\{\begin{array}{cl}
\frac{1}{3}(x-1) & \text { if } 1 \leq x<4 \\
5-x & \text { if } 4 \leq x<5 \\
0 & \text { otherwise }
\end{array}\right.
$$

$A(x)=\left\{\begin{array}{cl}\frac{1}{2}(x-1) & \text { if } 1 \leq x<3 \\ 1 & \text { if } 3 \leq x<4 \\ 5-x & \text { if } 4 \leq x<5 \\ 0 & \text { otherwise }\end{array}\right.$

Fuzzy Sets: Membership Functions

$$
A(x)=\left\{\begin{array}{cl}
-\frac{(x-1)(x-5)}{4} & \text { if } 1 \leq x<5 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
A(x)=\exp \left(-\frac{(x-3)^{2}}{2}\right)
$$

Fuzzy Sets: Basic Definitions

Definition

A fuzzy set F over the crisp set X is termed
a) empty if $F(x)=0$ for all $x \in X$,
b) universal if $F(x)=1$ for all $x \in X$.

Empty fuzzy set is denoted by \mathbb{O}. Universal set is denoted by \mathbb{U}.

Definition

Let A and B be fuzzy sets over the crisp set X.
a) A and B are termed equal, denoted $A=B$, if $A(x)=B(x)$ for all $x \in X$.
b) A is a subset of B, denoted $A \subseteq B$, if $A(x) \leq B(x)$ for all $x \in X$.
c) A is a strict subset of B, denoted $A \subset B$, if $A \subseteq B$ and $\exists x \in X: A(x)<B(x)$.

Remark: A strict subset is also called a proper subset.

Fuzzy Sets: Basic Relations

Theorem

Let A, B and C be fuzzy sets over the crisp set X. The following relations are valid:
a) reflexivity $\quad: A \subseteq A$.
b) antisymmetry : $A \subseteq B$ and $B \subseteq A \Rightarrow A=B$.
c) transitivity $\quad: A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$.

Proof: (via reduction to definitions and exploiting operations on crisp sets) ad a) $\forall x \in X: A(x) \leq A(x)$.
ad b) $\forall \mathrm{x} \in \mathrm{X}: \mathrm{A}(\mathrm{x}) \leq \mathrm{B}(\mathrm{x})$ and $\mathrm{B}(\mathrm{x}) \leq \mathrm{A}(\mathrm{x}) \Rightarrow \mathrm{A}(\mathrm{x})=\mathrm{B}(\mathrm{x})$.
ad c) $\forall \mathrm{x} \in \mathrm{X}: \mathrm{A}(\mathrm{x}) \leq \mathrm{B}(\mathrm{x})$ and $\mathrm{B}(\mathrm{x}) \leq \mathrm{C}(\mathrm{x}) \Rightarrow \mathrm{A}(\mathrm{x}) \leq \mathrm{C}(\mathrm{x})$.

Remark: Same relations valid for crisp sets. No Surprise! Why?

Fuzzy Sets: Standard Operations

Definition

Let A and B be fuzzy sets over the crisp set X. The set C is the
a) union of A and B, denoted $C=A \cup B$, if $C(x)=\max \{A(x), B(x)\}$ for all $x \in X$;
b) intersection of A and B, denoted $C=A \cap B$, if $C(x)=\min \{A(x), B(x)\}$ for all $x \in X$;
c) complement of A, denoted $C=A^{c}$, if $C(x)=1-A(x)$ for all $x \in X$.

Fuzzy Sets: Standard Operations in 2D

standard fuzzy union

interpretation: membership $=0$ is white, $=1$ is black, in between is gray

Fuzzy Sets: Standard Operations in 2D

standard fuzzy intersection

interpretation: membership $=0$ is white, $=1$ is black, in between is gray

Fuzzy Sets: Standard Operations in 2D

standard fuzzy complement

interpretation: membership $=0$ is white, $=1$ is black, in between is gray

Fuzzy Sets: Basic Definitions

Definition

The fuzzy set A over the crisp set X has
a) height $\operatorname{hgt}(A)=\sup \{A(x): x \in X\}$,
b) depth $\operatorname{dpth}(A)=\inf \{A(x): x \in X\}$.

$A(x)=\frac{1}{5}+\frac{3}{5} \exp (-|x|)$

$$
A(x)=\min \left\{1,2 \exp \left(-\frac{x^{2}}{2}\right)\right\}
$$

Fuzzy Sets: Basic Definitions

Definition

The fuzzy $\operatorname{set} A$ over the crisp set X is
a) normal if hgt $(A)=1$
b) strongly normal

$$
\text { if } \exists x \in X: A(x)=1
$$

c) co-normal
if dpth(A) $=0$
d) strongly co-normal
if $\exists x \in X: A(x)=0$
e) subnormal
if $0<A(x)<1$ for all $x \in X$.

Remark:
How to normalize a non-normal fuzzy set A?

$$
A^{*}(x)=\frac{A(x)}{\operatorname{hgt}(A)}
$$

Fuzzy Sets: Basic Definitions

Definition

The cardinality $\operatorname{card}(\mathrm{A})$ of a fuzzy set A over the crisp set X is

$$
\operatorname{card}(A):= \begin{cases}\sum_{x \in X} A(x) & , \text { if } \mathrm{X} \text { countable } \\ \int_{X} A(x) d x & , \text { if } X \subseteq \mathrm{R}^{\mathrm{n}}\end{cases}
$$

Examples:

a) $\mathrm{A}(\mathrm{x})=\mathrm{q}^{\mathrm{x}}$ with $\mathrm{q} \in(0,1), \mathrm{x} \in \mathrm{N}_{0} \quad \Rightarrow \operatorname{card}(\mathrm{~A})=\sum_{x \in X} A(x)=\sum_{x=0}^{\infty} q^{x}=\frac{1}{1-q}<\infty$
b) $A(x)=1 / x$ with $x \in N$
$\Rightarrow \operatorname{card}(\mathrm{A})=\sum_{x \in X} A(x)=\sum_{x=1}^{\infty} \frac{1}{x}=\infty$
c) $A(x)=\exp (-|x|)$ with $x \in \mathbb{R}$

$$
\Rightarrow \operatorname{card}(\mathrm{A})=\int_{x \in X} A(x) d x=\int_{x=-\infty}^{\infty} \exp (-|x|) d x=2
$$

Fuzzy Sets: Basic Results

Theorem

For fuzzy sets A, B and C over a crisp set X the standard union operation is
a) commutative
$: A \cup B=B \cup A$
b) associative
$: A \cup(B \cup C)=(A \cup B) \cup C$
c) idempotent
$: A \cup A=A$
d) monotone
$: A \subseteq B \Rightarrow(A \cup C) \subseteq(B \cup C)$.

Proof: (via reduction to definitions)
$\operatorname{ad} \mathrm{a}) \mathrm{A} \cup \mathrm{B}=\max \{\mathrm{A}(\mathrm{x}), \mathrm{B}(\mathrm{x})\}=\max \{\mathrm{B}(\mathrm{x}), \mathrm{A}(\mathrm{x})\}=\mathrm{B} \cup \mathrm{A}$.
ad b) $A \cup(B \cup C)=\max \{A(x), \max \{B(x), C(x)\}\}=\max \{A(x), B(x), C(x)\}$ $=\max \{\max \{A(x), B(x)\}, C(x)\}=(A \cup B) \cup C$.
$\operatorname{ad} \mathrm{c}) \mathrm{A} \cup \mathrm{A}=\max \{\mathrm{A}(\mathrm{x}), \mathrm{A}(\mathrm{x})\}=\mathrm{A}(\mathrm{x})=\mathrm{A}$.
ad d) $A \cup C=\max \{A(x), C(x)\} \leq \max \{B(x), C(x)\}=B \cup C$ since $A(x) \leq B(x)$. q.e.d.

Fuzzy Sets: Basic Results

Theorem

For fuzzy sets A, B and C over a crisp set X the standard intersection operation is
a) commutative
$: A \cap B=B \cap A$
b) associative
$: A \cap(B \cap C)=(A \cap B) \cap C$
c) idempotent
$: A \cap A=A$
d) monotone
$: A \subseteq B \Rightarrow(A \cap C) \subseteq(B \cap C)$.

Proof: (analogous to proof for standard union operation)

Fuzzy Sets: Basic Results

Theorem

For fuzzy sets A, B and C over a crisp set X there are the distributive laws
a) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
b) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Proof:
ad a) $\max \{A(x), \min \{B(x), C(x)\}\}=\left\{\begin{array}{l}\max \{A(x), B(x)\} \text { if } B(x) \leq C(x) \\ \max \{A(x), C(x)\} \text { otherwise }\end{array}\right.$
If $B(x) \leq C(x)$ then $\max \{A(x), B(x)\} \leq \max \{A(x), C(x)\}$.
Otherwise

$$
\max \{A(x), C(x)\} \leq \max \{A(x), B(x)\} .
$$

\Rightarrow result is always the smaller max-expression
\Rightarrow result is $\min \{\max \{A(x), B(x)\}, \max \{A(x), C(x)\}\}=(A \cup B) \cap(A \cup C)$. ad b) analogous.

Fuzzy Sets: Basic Results

Theorem

If A is a fuzzy set over a crisp set X then
a) $A \cup \mathbb{D}=A$
b) $A \cup \mathbb{U}=\mathbb{U}$
c) $A \cap \mathbb{O}=\mathbb{O}$
d) $A \cap \mathbb{U}=A$.

Proof:

(via reduction to definitions)
ad a) $\max \{A(x), 0\}=A(x)$
ad b) $\max \{A(x), 1\}=\mathbb{U}(x) \equiv 1$
ad c) $\min \{A(x), 0\}=\mathbb{O}(x) \equiv 0$
ad d) $\min \{A(x), 1\}=A(x)$.

Breakpoint:

So far we know that fuzzy sets with operations \cap and \cup are a distributive lattice.
If we can show the validity of

- $\left(A^{c}\right)^{c}=A$
- $A \cup A^{c}=\mathbb{U}$
- $A \cap A^{c}=\mathbb{D}$
\Rightarrow Fuzzy Sets would be Boolean Algebra! Is it true ?

Fuzzy Sets: Basic Results

Theorem

If A is a fuzzy set over a crisp set X then
a) $\left(A^{c}\right)^{\mathrm{c}}=\mathrm{A}$
b) $1 / 2 \leq\left(A \cup A^{c}\right)(x)<1$ for $A(x) \in(0,1)$
c) $0<\left(A \cap A^{c}\right)(x) \leq 1 / 2$ for $A(x) \in(0,1)$

Proof.

ad a) $\forall x \in X: 1-(1-A(x))=A(x)$.
ad b) $\forall x \in X: \max \{A(x), 1-A(x)\}=1 / 2+|A(x)-1 / 2| \geq 1 / 2$.
Value 1 only attainable for $\mathrm{A}(\mathrm{x})=0$ or $\mathrm{A}(\mathrm{x})=1$.
ad c) $\forall x \in X: \min \{A(x), 1-A(x)\}=1 / 2-|A(x)-1 / 2| \leq 1 / 2$.
Value 0 only attainable for $A(x)=0$ or $A(x)=1$.
q.e.d.

Fuzzy Sets: Algebraic Structure

Conclusion:

Fuzzy sets with \cup and \cap are a distributive lattice.
But in general:
$\left.\begin{array}{l}\text { a) } A \cup A^{c} \neq \mathbb{U} \\ \text { b) } A \cap A^{c} \neq \mathbb{D}\end{array}\right\} \Rightarrow$ Fuzzy sets with \cup and \cap are not a Boolean algebra!

Remarks:

ad a) The law of excluded middle does not hold!
(,Everything must either be or not be!")
ad b) The law of noncontradiction does not hold!
(,Nothing can both be and not be!")
$\Rightarrow \quad$ Nonvalidity of these laws generate the desired fuzziness!
but: Fuzzy sets still endowed with much algebraic structure (distributive lattice)!

Fuzzy Sets: DeMorgan‘s Laws

Theorem

If A and B are fuzzy sets over a crisp set X with standard union, intersection, and complement operations then DeMorgan's laws are valid:
a) $(A \cap B)^{c}=A^{c} \cup B^{c}$
b) $(A \cup B)^{c}=A^{c} \cap B^{c}$

Proof: (via reduction to elementary identities)
ad a) $(A \cap B)^{c}(x)=1-\min \{A(x), B(x)\}=\max \{1-A(x), 1-B(x)\}=A^{c}(x) \cup B^{c}(x)$
ad b) $(A \cup B)^{c}(x)=1-\max \{A(x), B(x)\}=\min \{1-A(x), 1-B(x)\}=A^{c}(x) \cap B^{c}(x)$
q.e.d.

Question :
Conjecture
technische universität : Why restricting result above to "standard" operations?
dortmund

