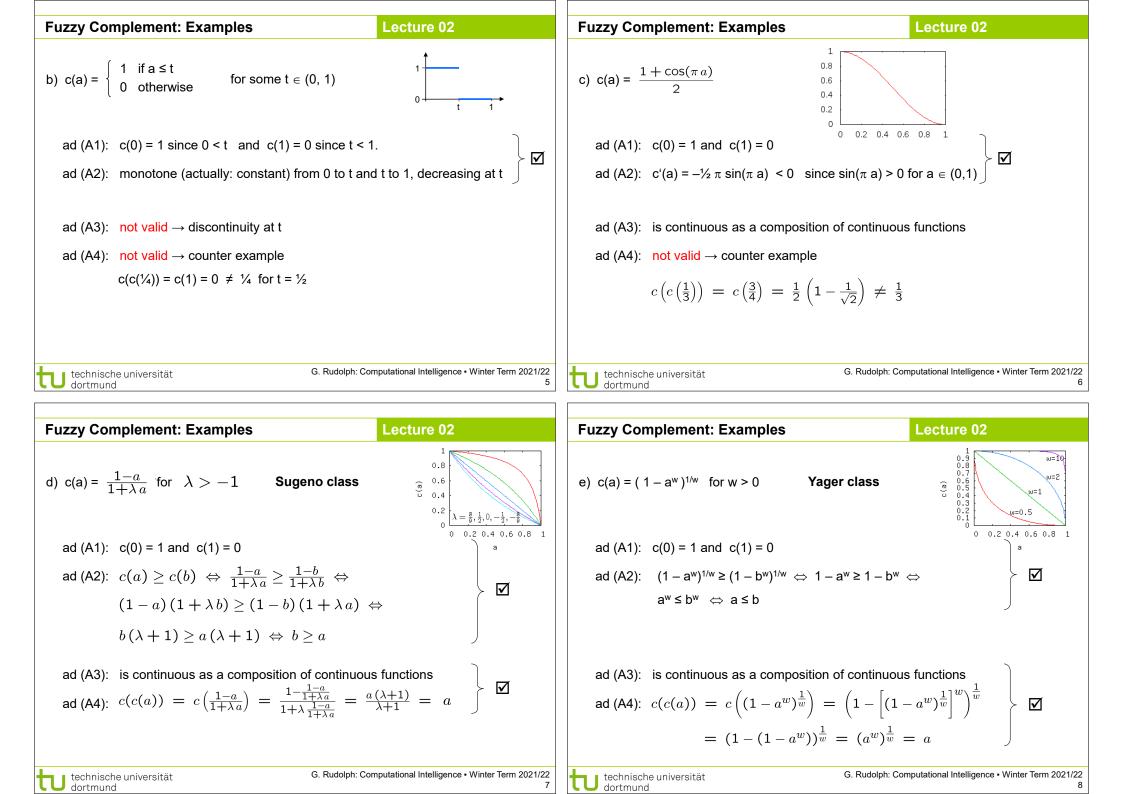
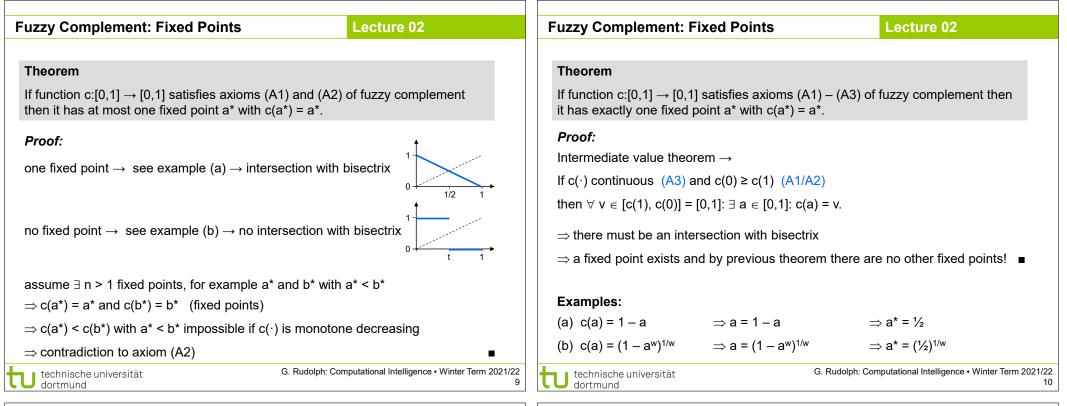
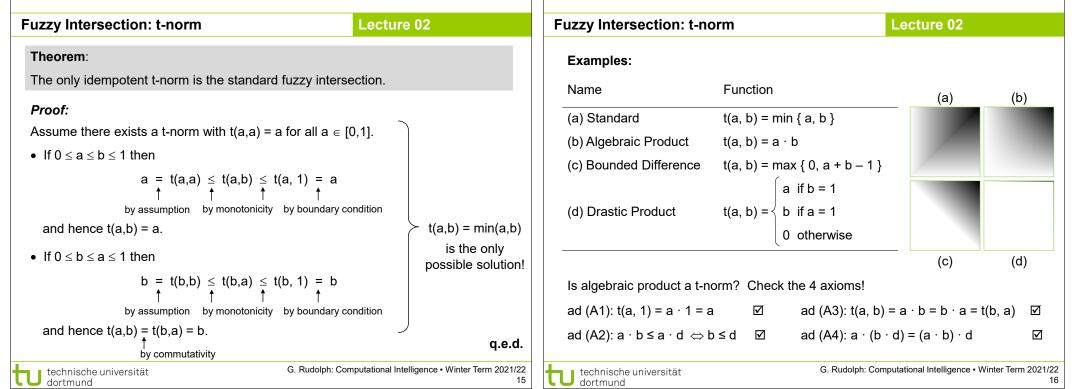
		Plan for	Today		Lecture 02
Computational Intelligence Winter Term 2021/22		 Fuzzy sets Axioms of fuzzy complement, t- and s-norms Generators Dual tripels 			
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund		tu technis dortmu	sche universität Ind	G. Rudolph: Comp	outational Intelligence • Winter Term 2021/22 2
Fuzzy Sets	.ecture 02	Fuzzy Co	omplement: Axioms		Lecture 02
 Considered so far: Standard fuzzy operators A^c(x) = 1 - A(x) (A ∩ B)(x) = min { A(x), B(x) } (A ∪ B)(x) = max { A(x), B(x) } ⇒ Compatible with operators for crisp sets with membership functions with values in B = { 0, 1 } ∃ Non-standard operators? ⇒ Yes! Innumerable many! 		(A1) (A2) "nice to (A3) (A4) Examp	on c: $[0,1] \rightarrow [0,1]$ is a <i>fuzzy comp</i> c(0) = 1 and c(1) = 0. \forall a, b $\in [0,1]$: a \leq b \Rightarrow c(a) \geq c(b have": c(\cdot) is continuous. \forall a $\in [0,1]$: c(c(a)) = a	o).	monotone decreasing





Fuzzy Complement: 1 st Characterization	Lecture 02	Fuzzy Complement: 1st Characterization Lecture 02
Theoremc: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff \exists continuous function g: $[0,1] \rightarrow \mathbb{R}$ with• $g(0) = 0$ • strictly monotone increasing• $\forall a \in [0,1]$: $c(a) = g^{(-1)}(g(1) - g(a))$. Examples a) $g(x) = x \qquad \Rightarrow g^{(-1)}(x) = x \qquad \Rightarrow c(a) = 1 - a$	defines an increasing generator $g^{(-1)}(x)$ pseudo-inverse = $g^{-1}(min\{g(1), x\})$ (Standard)	Examples d) $g(a) = \frac{1}{\lambda} \log_e(1 + \lambda a) \text{ for } \lambda > -1$ $\cdot g(0) = \log_e(1) = 0$ $\cdot \text{ strictly monotone increasing since } g'(a) = \frac{1}{1 + \lambda a} > 0 \text{ for } a \in [0, 1]$ $\cdot \text{ inverse function on } [0,1] \text{ is } g^{-1}(a) = \frac{\exp(\lambda a) - 1}{\lambda}$, thus $c(a) = g^{-1} \left(\frac{\log(1 + \lambda)}{\lambda} - \frac{\log(1 + \lambda a)}{\lambda} \right)$ $= \frac{\exp(\log(1 + \lambda) - \log(1 + \lambda a)) - 1}{\lambda}$
b) $g(x) = x^w \implies g^{(-1)}(x) = x^{1/w} \implies c(a) = (1 - a^w)^{-1}$ c) $g(x) = \log(x+1) \Rightarrow g^{(-1)}(x) = e^x - 1 \Rightarrow c(a) = \exp(\log x)^{-1}$		$= \frac{1}{\lambda} \left(\frac{1+\lambda}{1+\lambda a} - 1 \right) = \frac{1-a}{1+\lambda a} $ (Sugeno Complement)
$=\frac{1-a}{1+a}$	(Sugeno class. λ = 1)	
U technische universität G. Rudolph: C dortmund	omputational Intelligence • Winter Term 2021/22 11	G. Rudolph: Computational Intelligence • Winter Term 20 dortmund

Fuzzy Complement: 2nd CharacterizationLecture 02	Fuzzy Intersection: t-norm	Lecture 02
Theorem	Definition	
c: $[0,1] \rightarrow [0,1]$ is involutive fuzzy complement iff	A function t:[0,1] x [0,1] \rightarrow [0,1] is a fuzzy in	ntersection or t-norm iff $\forall a,b,d \in [0,1]$
\exists continuous function f: [0,1] $\rightarrow \mathbb{R}$ with	(A1) t(a, 1) = a	(boundary condition)
• f(1) = 0 defines a	(A2) $b \le d \Rightarrow t(a, b) \le t(a, d)$	(monotonicity)
strictly monotone decreasing	(A3) t(a,b) = t(b, a)	(commutative)
• $\forall a \in [0,1]: c(a) = f^{(-1)}(f(0) - f(a)).$	D-inverse $(A4) t(a, t(b, d)) = t(t(a, b), d)$	(associative)
$= f^{-1}(\min\{f(0), x\})$	x })	
Examples	"nice to have"	
a) $f(x) = k - k \cdot x$ $(k \ge 1)$ $f^{(-1)}(x) = 1 - x/k$ $c(a) = 1 - \frac{k - (k - ka)}{k}$	= $1 - a$ (A5) t(a, b) is continuous	(continuity)
	(A6) t(a, a) < a for 0 < a < 1	(subidempotent)
b) $f(x) = 1 - x^w$ $f^{(-1)}(x) = (1 - x)^{1/w}$ $c(a) = f^{-1}(a^w) = (1 - a^w)^{1/w}$	(Yager) (A7) $a_1 < a_2$ and $b_1 \le b_2 \implies t(a_1, b_1) < t(a_2)$, b ₂) (strict monotonicity)
	Note: the only idempotent t-norm is the star	ndard fuzzy intersection
U technische universität G. Rudolph: Computational Intelligence • V	Winter Term 2021/22 13 technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2021/22 14



Fuzzy Intersection: Characterization	Lecture 02	Fuzzy Union: s-norm	Lecture 02	
Theorem		Definition		
Function t: [0,1] x [0,1] \rightarrow [0,1] is a t-norm ,		A function s:[0,1] x [0,1] \rightarrow [0,1] is a <i>fuzzy unio</i>	<i>n</i> or <i>s-norm</i> iff ∀a,b,d ∈ [0,1]	
\exists decreasing generator f:[0,1] $\rightarrow \mathbb{R}$ with t(a, b) = f^{-1}	(min{ f(0), f(a) + f(b) }). ■	(A1) s(a, 0) = a	(boundary condition)	
		(A2) $b \le d \Rightarrow s(a, b) \le s(a, d)$	(monotonicity)	
Example:		(A3) $s(a, b) = s(b, a)$	(commutative)	
f(x) = 1/x - 1 is decreasing generator since		(A4) $s(a, s(b, d)) = s(s(a, b), d)$	(associative) ■	
• f(x) is continuous				
• $f(1) = 1/1 - 1 = 0$		"nice to have"		
• $f'(x) = -1/x^2 < 0$ (monotone decreasing)		(A5) s(a, b) is continuous	(continuity)	
inverse function is $f^{1}(x) = \frac{1}{x+1}$; $f(0) = \infty \Rightarrow n$	in[f(0), f(0) + f(0)] = f(0) + f(0)	(A6) s(a, a) > a for 0 < a < 1	(superidempotent)	
	$\min\{1(0), 1(a) + 1(b)\} = 1(a) + 1(b)$	(A7) $a_1 < a_2$ and $b_1 \le b_2 \implies s(a_1, b_1) < s(a_2, b_2)$) (strict monotonicity)	
\Rightarrow t(a, b) = $f^{-1}\left(\frac{1}{a} + \frac{1}{b} - 2\right) = \frac{1}{\frac{1}{a} + \frac{1}{b} - 1}$	$= \frac{ab}{a+b-ab}$	Note: the only idempotent s-norm is the standard fuzzy union		
U technische universität G. Rudol; dortmund	h: Computational Intelligence • Winter Term 2021/22 17	G. F dortmund	udolph: Computational Intelligence • Winter Term 202	

F	uzzy Union: s-norm		Lecture 02			
	Examples:					
	Name	Function	(a)	(b)		
	Standard	s(a, b) = max { a, b }				
	Algebraic Sum	s(a, b) = a + b – a · b				
	Bounded Sum	s(a, b) = min { 1, a + b }	100			
	Drastic Union	$s(a, b) = \begin{cases} a & \text{if } b = 0 \\ b & \text{if } a = 0 \\ 1 & \text{otherwise} \end{cases}$				
		1 otherwise				
			(c)	(d)		
	Is algebraic sum a t-norm	? Check the 4 axioms!				
	ad (A1): s(a, 0) = a + 0 - a	ad (A3): 🗹				
	ad (A2): $a + b - a \cdot b \le a$	+ d – a · d ⇔ b (1 – a) ≤ d (1 -	ad (A3): 🗹			
t	U technische universität dortmund	G. Rudolph: Con	nputational Intelligence • V			

Fuzzy Union: Characterization	on	Lecture 02
Theorem		
Function s: $[0,1] \times [0,1] \rightarrow [0,1] i$	s a s-norm ⇔	
\exists increasing generator g:[0,1] \rightarrow	\mathbb{R} with s(a, b) = g ⁻¹ (m)	lin{ g(1), g(a) + g(b) }). ∎
Example:		
$g(x) = -\log(1 - x)$ is increasing g	enerator since	
• g(x) is continuous		
• $g(0) = -log(1 - 0) = 0$	V	
 g'(x) = 1/(1 − x) > 0 (monotone) 	e increasing) ⊠	
inverse function is $g^{-1}(x) = 1 - e^{x}$	$(-x); g(1) = \infty \implies mir$	n{g(1), g(a) + g(b)} = g(a) + g(b
\Rightarrow s(a, b) = $g^{-1}(-\log(1-d))$	$a) - \log(1-b))$	
$= 1 - \exp(\log(1 - $	$a) + \log(1-b))$	
= 1 - (1 - a) (1 - a)	(-b) = a + b - a b	(algebraic sum)
U technische universität dortmund	G. Rudolph: Co	mputational Intelligence • Winter Term 2021/2 2

Combination of Fuzz	y Operations: Dual T	riples Lecture 02	Dual Triples vs. Non-Dua	al Triples	Lecture 02
Background from clas	ssical set theory:				Dual Triple:
\cap and \cup operations are	e dual w.r.t. complement s	ince they obey DeMorgan's laws			- bounded difference
					- bounded sum
Definition		Definition			- standard complement
	nd s-norm s(\cdot , \cdot) is said to				
dual with regard to th	e fuzzy complement c(·) iff of fuzzy complement c(·), s- and t-norm.			\Rightarrow left image = right imag
• $c(t(a, b)) = s(c(a), c(a))$	c(b))				
• c(s(a, b)) = t(c(a), c	c(b))	If t and s are dual to c then the tripel (c,s, t) is	c(t(a, b))	s(c(a), c(b))	
for all a, $b \in [0,1]$.		■ called a <i>dual tripel</i> . ■			Non-Dual Triple:
					- algebraic product
Examples of dual tripels					- bounded sum
t-norm	s-norm	complement			- standard complement
min { a, b }	max { a, b }	1 – a			
a·b	a+b-a b	1 – a			\Rightarrow left image \neq right image
max { 0, a + b – 1 }	min { 1, a + b }	1 – a			
technische universität	G. R	udolph: Computational Intelligence • Winter Term 2021/2		G. Rudolph:	Computational Intelligence • Winter Term 20
U dortmund		2	1 dortmund		

Dual Triples vs. Non-Dual Triples

Lecture 02

Why are dual triples so important?

 \Rightarrow allow equivalence transformations of fuzzy set expressions

 \Rightarrow required to transform into some equivalent normal form (standardized input)

 \Rightarrow e.g. two stages: intersection of unions

$$\bigcap_{i=1}^{n} (A_i \cup B_i)$$
$$\bigcup_{i=1}^{n} (A_i \cap B_i)$$

n

or union of intersections

 $A \cup (B \cap (C \cap D)^c) =$ $A \cup (B \cap (C^c \cup D^c)) =$

 $A \cup (B \cap C^c) \cup (B \cap D^c)$

U technische universität dortmund *i*=1 ← not in normal form ← equivalent if DeMorgan's law valid (dual triples!) ← equivalent (distributive lattice!) G. Rudolph: Computational Intelligence • Winter Term 2021/22 23