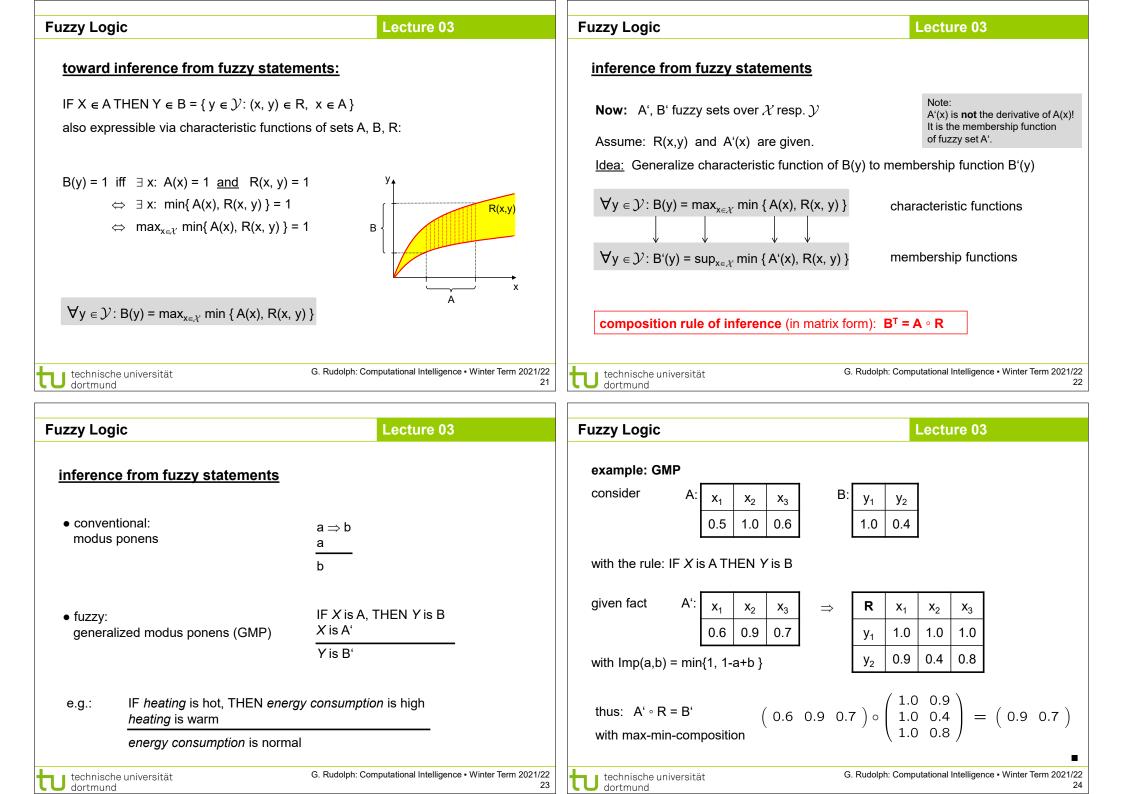

technische universität dortmund	Plan for Today Lecture 03
Computational Intelligence Winter Term 2021/22	 Fuzzy relations Fuzzy logic Linguistic variables and terms Inference from fuzzy statements
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund	
	G. Rudolph: Computational Intelligence • Winter Term 2021/2 dortmund
Fuzzy Relations Lecture 03	Fuzzy Relations Lecture 03
relations with <u>conventional sets</u> $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n$: $R(\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n) \subseteq \mathcal{X}_1 \times \mathcal{X}_2 \times \dots \times \mathcal{X}_n$ notice that cartesian product is a set ! \Rightarrow all set operations remain valid!	Definition Fuzzy relation = fuzzy set over crisp cartesian product $X_1 \times X_2 \times \ldots \times X_n$ \rightarrow each tuple (x ₁ ,, x _n) has a degree of membership to relation \rightarrow degree of membership expresses strength of relationship between elements of tuple
crisp membership function (of x to relation R)	appropriate representation: n-dimensional <u>membership matrix</u> example: Let X = { New York, Paris } and Y = { Bejing, New York, Dortmund }.
$R(x_1, x_2, \dots, x_n) = \begin{cases} 1 & \text{if } (x_1, x_2, \dots, x_n) \in R \\ 0 & \text{otherwise} \end{cases}$	relation R = "very far away" relation R New York Paris membership matrix Image: Second
U technische universität G. Rudolph: Computational Intelligence • Winter Term 2021/2 dortmund	


Fuzzy Relations	ecture 03 Fuzzy Rel	ations	Lecture 03	
Definition	Theorem			
Let R(X, Y) be a fuzzy relation with membership matrix R. The <i>inverse fuzzy relation</i> to R(X,Y), denoted R ⁻¹ (Y, X), is a relation on Y x X with membership matrix R ^{\cdot} .		a) max-min composition on relations is associative.		
		b) max-min composition on relations is not commutative.		
Remark : R' is the transpose of membership matrix R.		$(Y) \circ Q(Y,Z))^{-1} = Q^{-1}(Z,Y) \circ P^{-1}(Y,X).$		
Evidently: $(R^{-1})^{-1} = R$ since $(R^{c})^{c} = R$		ip matrix of max-min composition le via "fuzzy matrix multiplication":	R = P ∘ Q	
Definition				
Let $P(X, Y)$ and $Q(Y, Z)$ be fuzzy relations. The operation \circ c $P(X, Y) \circ Q(Y, Z)$, is termed <i>max-min-composition</i> iff	on two relations, denoted fuzzy	matrix multiplication $r_{ij} = \max_k$	$\min\{p_{ik}, q_{kj}\}$	
$R(x, z) = (P \circ Q)(x, z) = \max_{y \in Y} \min \{ P(x, y), \}$	Q(y, z) }.	matrix multiplication $r_{ij} = \max_k^k$ matrix multiplication $r_{ij} = \sum_k^k p_k^k$	$p_{ik} \cdot q_{kj}$	
U dortmund	5 CO dortmun	d	G. Rudolph: Computational Intelligence • Winter Term 202	
U dortmund	ecture 03	ations	Lecture 03	
U dortmund	ecture 03 Binary fuz	ations zy relations on X x X : properties	Lecture 03	
Fuzzy Relations	ecture 03 Binary fuz • reflexiv	ations zy relations on X x X : properties e $\Leftrightarrow \forall x \in X : R(x,x)$	Lecture 03	
Fuzzy Relations L further methods for realizing compositions of relations: max-prod composition	ecture 03 Binary fuz • reflexiv • irreflexi	ations zy relations on X x X : properties e $\Leftrightarrow \forall x \in X : R(x,x)$ ve $\Leftrightarrow \exists x \in X : R(x,x)$	Lecture 03 s () = 1 () < 1	
Fuzzy Relations	ecture 03 Fuzzy Rel Binary fuz • reflexiv • irreflexiv • antirefle	ationszy relations on X x X : propertiese $\Leftrightarrow \forall x \in X : R(x,x)$ ve $\Leftrightarrow \exists x \in X : R(x,x)$ ve $\Leftrightarrow \exists x \in X : R(x,x)$ exive $\Leftrightarrow \forall x \in X : R(x,x)$	Lecture 03 S () = 1 () < 1 () < 1	
Fuzzy Relations L further methods for realizing compositions of relations: max-prod composition	ecture 03 Fuzzy Rel Binary fuz • reflexiv • irreflexi • antirefle • symme	ationszy relations on X x X : propertiese $\Leftrightarrow \forall x \in X : R(x, x)$ ve $\Leftrightarrow \exists x \in X : R(x, x)$ ve $\Leftrightarrow \exists x \in X : R(x, x)$ exive $\Leftrightarrow \forall x \in X : R(x, x)$ exive $\Leftrightarrow \forall x \in X : R(x, x)$ exive $\Leftrightarrow \forall x \in X : R(x, x)$ exive $\Leftrightarrow \forall x \in X : R(x, x)$	Lecture 03 5 () = 1 () < 1 () < 1 (: R(x,y) = R(y,x)	
Fuzzy Relations L further methods for realizing compositions of relations: max-prod composition	ecture 03 Fuzzy Rel Binary fuz • reflexiv • irreflexi • antirefle • asymmet	ationszy relations on X x X : propertiese $\Leftrightarrow \forall x \in X : R(x,x)$ ve $\Leftrightarrow \exists x \in X : R(x,x)$ ve $\Leftrightarrow \forall x \in X : R(x,x)$ exive $\Leftrightarrow \forall x \in X : R(x,x)$ exive $\Leftrightarrow \forall x \in X : R(x,x)$ exive $\Leftrightarrow \forall (x,y) \in X x X$ etric $\Leftrightarrow \exists (x,y) \in X x X$	Lecture 03 s = 1 s < 1	
Fuzzy Relations $[P \odot Q)(x, z) = \max_{y \in \mathcal{Y}} \{P(x, y) \cdot Q(y, z)\}$ <u>generalization:</u> sup-t composition	ecture 03 Fuzzy Rel Binary fuz • reflexiv • irreflexi • antirefle • asymme • asymme	ationszy relations on X x X : propertiese $\Leftrightarrow \forall x \in X : R(x,x)$ ve $\Leftrightarrow \exists x \in X : R(x,x)$ ve $\Leftrightarrow \forall x \in X : R(x,x)$ exive $\Leftrightarrow \forall x \in X : R(x,x)$ exive $\Leftrightarrow \forall x \in X : R(x,x)$ exive $\Leftrightarrow \forall (x,y) \in X x X$ etric $\Leftrightarrow \exists (x,y) \in X x X$	Lecture 03 s = 1 s < 1	
Fuzzy Relations $[P \odot Q)(x, z) = \max_{y \in \mathcal{Y}} \{P(x, y) \cdot Q(y, z)\}$ <u>generalization:</u> sup-t composition	ecture 03 Fuzzy Rel Binary fuz • reflexiv • irreflexi • antirefle • asymme • asymme	ationszy relations on X x X : propertiese $\Leftrightarrow \forall x \in X : R(x,x)$ ve $\Leftrightarrow \exists x \in X : R(x,x)$ ve $\Leftrightarrow \exists x \in X : R(x,x)$ exive $\Leftrightarrow \forall (x,y) \in X \times X$ etric $\Leftrightarrow \exists (x,y) \in X \times X$ etric $\Leftrightarrow \forall (x,y) \in X \times X$ etric $\Leftrightarrow \forall (x,y) \in X \times X$	Lecture 03 s = 1 s < 1	
Fuzzy Relations L further methods for realizing compositions of relations: max-prod composition $(P \odot Q)(x, z) = \max_{y \in \mathcal{Y}} \{P(x, y) \cdot Q(y, z)\}$	ecture 03 Fuzzy Rel Binary fuz • reflexiv • irreflexi • antirefle • asymme • asymme	ationszy relations on X x X : propertiese $\Leftrightarrow \forall x \in X : R(x, x)$ ve $\Leftrightarrow \exists x \in X : R(x, x)$ ve $\Leftrightarrow \forall x \in X : R(x, x)$ exive $\Leftrightarrow \forall x \in X : R(x, x)$ exive $\Leftrightarrow \forall x \in X : R(x, x)$ etric $\Leftrightarrow \forall (x, y) \in X \times X$ etric $\Leftrightarrow \exists (x, y) \in X \times X$ ometric $\Leftrightarrow \forall (x, z) \in X \times X$	Lecture 03 s = 1 s < 1	
Fuzzy Relations L Fuzzy Relations L further methods for realizing compositions of relations: max-prod composition $(P \odot Q)(x, z) = \max_{y \in \mathcal{Y}} \{P(x, y) \cdot Q(y, z)\}$ generalization: sup-t composition $(P \circ Q)(x, z) = \sup_{y \in \mathcal{Y}} \{t(P(x, y), Q(y, z))\}$, where t(e.g.: t(a,b) = min{a, b} \Rightarrow max-min-composition	ecture 03 Fuzzy Rel Binary fuz • reflexiv • irreflexiv • antireflexiv • asymme • asymme	ationszy relations on X x X : propertiese $\Leftrightarrow \forall x \in X : R(x,x)$ ve $\Leftrightarrow \exists x \in X : R(x,x)$ ve $\Leftrightarrow \exists x \in X : R(x,x)$ exive $\Leftrightarrow \forall x \in X : R(x,x)$ exive $\Leftrightarrow \forall x \in X : R(x,x)$ etric $\Leftrightarrow \forall (x,y) \in X \times X$ etric $\Leftrightarrow \exists (x,y) \in X \times X$ umetric $\Leftrightarrow \forall (x,z) \in X \times X$ ve $\Leftrightarrow \forall (x,z) \in X \times X$ tive $\Leftrightarrow \exists (x,z) \in X \times X$	Lecture 03 s = 1 s < 1	
Fuzzy Relations Fuzzy Relations further methods for realizing compositions of relations: max-prod composition $(P \odot Q)(x, z) = \max_{y \in \mathcal{Y}} \{P(x, y) \cdot Q(y, z)\}$ generalization: sup-t composition $(P \circ Q)(x, z) = \sup_{y \in \mathcal{Y}} \{t(P(x, y), Q(y, z))\},$ where t(ecture 03 Fuzzy Rel Binary fuz • reflexiv • irreflexiv • antirefle • asymme • asymme • asymme • asymme • antisym • intransitiv • intransitiv	ationszy relations on X x X : propertiese $\Leftrightarrow \forall x \in X : R(x,x)$ ve $\Leftrightarrow \exists x \in X : R(x,x)$ ve $\Leftrightarrow \exists x \in X : R(x,x)$ exive $\Leftrightarrow \forall x \in X : R(x,x)$ exive $\Leftrightarrow \forall x \in X : R(x,x)$ etric $\Leftrightarrow \forall (x,y) \in X \times X$ etric $\Leftrightarrow \exists (x,y) \in X \times X$ umetric $\Leftrightarrow \forall (x,z) \in X \times X$ ve $\Leftrightarrow \forall (x,z) \in X \times X$ tive $\Leftrightarrow \exists (x,z) \in X \times X$	Lecture 03 5 (x) = 1 (x) < 1 (x) < 1 (x) < 1 (x) = R(y,x) (x) = R(y,x) (x) = R(y,x) + R(y,x) $(x) = R(x,y) \neq R(y,x)$ $(x) = R(x,y) \neq R(y,x)$ (

Fuzzy Relations	Lecture 03	Fuzzy Relations	Lecture 03
 binary fuzzy relation on X x X: <u>example</u> Let X be a subset of all cities in Germany. Fuzzy relation R is intended to represent the R(x,x) = 1, since every city is certainly ver 		crisp: relation R is <u>equivalence relation</u> , R re fuzzy: relation R is <u>similarity relation</u> , R reflex	
 ⇒ reflexive • R(x,y) = R(y,x): if city x is very close to city 	y y, then also vice versa.	examples: • equivalence relation: farm animals	What about
	Duisburg (DU) (E) (E) (DO) (DO) $(Hagen)$ (HA) (HA) $(DO,DU) = 0.5 < max min{R(DO,y), R(y, DU)} = 0.7$ y $(DO) = 0.8 ≥ max min{R(E ,y), R(y, DO)} = 0.8$	cattle, pigs, chicken, R(cow, ox) = 1 but R(cow, hen) = 0 • <i>similarity relation</i> : farm animals cattle, pigs, chicken, horse, donkey, . R(mule, (male) donkey) = 0.5 and R	hybrids?
	y G. Rudolph: Computational Intelligence • Winter Term 2021/22 9	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2021/22 10
Fuzzy Logic linguistic variable: variable that can attain several values of ling e.g.: color can attain values red, green, blu values (red, green,) of linguistic variable a linguistic terms are associated with fuzzy set	e, yellow, are called linguistic terms	Fuzzy Logic fuzzy proposition p: temperature is high linguistic variable (LV)	
green-blue green blue- green 450 525	n green-yellow $\lambda [nm]$	 LV may be associated with several L <i>high, medium, low</i> temperature are fover numerical scale of crisp temper <u>trueness</u> of fuzzy proposition "temper for a given concrete crisp temperation is interpreted as equal to the degree of the fuzzy set <i>high</i> 	uzzy sets ratures erature is high" ure value v
	G. Rudolph: Computational Intelligence • Winter Term 2021/22 11	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2021/2 1

technische universität dortmund

Fuzzy Logic	Lecture 03	Fuzzy Logic	Lecture 03
inference from fuzzy state	ements	example: GMT	_ []
 conventional: modus tollens 	$\frac{a \Rightarrow b}{\overline{b}}$	considerA: x_1 x_2 x_3 0.51.00.6with the rule: IF X is A THEN Y is B	B: y ₁ y ₂ 1.0 0.4
 fuzzy: generalized modus tollens 	(GMT) $\frac{\text{IF } X \text{ is A, THEN } Y \text{ is B}}{X \text{ is A}}$	given fact B': $y_1 y_2$ 0.9 0.7 with Imp(a,b) = min{1, 1-a+b }	$\Rightarrow \begin{array}{ c c c c c c c c } \hline \textbf{R} & x_1 & x_2 & x_3 \\ \hline y_1 & 1.0 & 1.0 & 1.0 \\ \hline y_2 & 0.9 & 0.4 & 0.8 \end{array}$
e.g.: IF <i>heating</i> is hot, energy consumption heating is warm	ГНЕN <i>energy consumption</i> is high on is normal	thus: $B' \circ R^{-1} = A' (0.9 \ 0.7)$ with max-min-composition	$ \begin{pmatrix} 1.0 & 1.0 & 1.0 \\ 0.9 & 0.4 & 0.8 \end{pmatrix} = (0.9 & 0.9 & 0.9) $
technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2		G. Rudolph: Computational Intelligence • Winter Term 2021/22 26
Fuzzy Logic	Lecture 03	Fuzzy Logic	Lecture 03
inference from fuzzy state	ements	example: GHS	
 conventional: hypothetic syllogism 	$ \begin{array}{l} a \Rightarrow b \\ b \Rightarrow c \\ \overline{a \Rightarrow c} \end{array} $	let fuzzy sets A(x), B(x), C(x) be given \Rightarrow determine the three relations	1
 fuzzy: generalized HS 	IF X is A, THEN Y is B IF Y is B, THEN Z is C IF X is A, THEN Z is C	$R_{1}(x,y) = Imp(A(x),B(y))$ $R_{2}(y,z) = Imp(B(y),C(z))$ $R_{3}(x,z) = Imp(A(x),C(z))$ and express them as matrices R ₁ ,	R ₂ , R ₃
IF energy consur	THEN energy consumption is high nption is high, THEN living is expensive	We say: GHS is valid if $R_1 \circ R_2 = R_3$	
IF <i>heating</i> is hot,	THEN <i>living</i> is expensive G. Rudolph: Computational Intelligence • Winter Term 2		

uzzy Logic	Lecture 03	Fuzzy Logic	Lecture 03
So, what makes sense for $Imp(\cdot, \cdot)$?		So, what makes sense for Imp((·,·)?
Imp(a,b) ought to express fuzzy version of implication (conventional: $a \Rightarrow b$ identical to $\overline{a} \lor b$ But how can we calculate with fuzzy "boolean" express request: must be compatible to crisp version (and more $\overline{a \ b \ a \land b \ t(a,b)}$ $\overline{0 \ 0 \ 0 \ 0}$ $\overline{a \ b \ a \lor b \ s(a,b)}$ $\overline{0 \ 0 \ 0 \ 0}$ $\overline{a \ b \ a \land b \ t(a,b)}$ $\overline{1 \ 0 \ 0 \ 0}$ $\overline{a \ b \ a \lor b \ s(a,b)}$ $\overline{0 \ 0 \ 0 \ 0}$ $\overline{a \ b \ a \land b \ t(a,b)}$ $\overline{1 \ 0 \ 0 \ 0}$ $\overline{a \ b \ a \lor b \ s(a,b)}$ $\overline{1 \ 0 \ 1 \ 1 \ 1}$ $\overline{a \ b \ a \land b \ t(a,b)}$ $\overline{1 \ 0 \ 0 \ 0}$ $\overline{a \ b \ a \lor b \ s(a,b)}$ $\overline{1 \ 0 \ 1 \ 1 \ 1}$	ions?	3rd approach: QL implications conventional: $a \Rightarrow b$ identical t fuzzy: $Imp(a, b) = s(c(a)$), b) to max{ $x \in \{0,1\}$: $a \land x \le b$ } $x \in [0,1]$: $t(a, x) \le b$ } o $\overline{a} \lor b \equiv \overline{a} \lor (a \land b)$ law of absorption
J technische universität G. Rudolph: Con dortmund	29	technische universität dortmund	
uzzy Logic	Lecture 03	Fuzzy Logic	Lecture 03
example: S implication $Imp(a, b) = s(c_s(a), b)$	o) (c _s : std. complement)	example: R implicationen	Imp(a, b) = max{ x ∈[0,1] : t(a, x) ≤ b }

technische universität dortmund technische universität dortmund

Fuzzy Logic Lecture 03	Fuzzy Logic		Lecture 03	Fuzzy Logic	Lecture 03
$(a, b) = max\{a, b\}$ $(std.)$ $Imp(a, b) = max\{1 - a, min\{a, b\}\}$ $(a, b) = max\{a, b\}$ $(std.)$ $Imp(a, b) = max\{1 - a, min\{a, b\}\}$ 2 NN* implication © (Klir/Yuan 1994) $(algebr. prd.)$ $Imp(a, b) = 1 - a + a^2b$ $(a, b) = ab$ $(algebr. rsum)$ $Imp(a, b) = 1 - a + a^2b$ 3. Kleene-Dienes implication $(algebr. sum)$ $Imp(a, b) = 1 - a + a^2b$ 3. Kleene-Dienes implication $(algebr. sum)$ $Imp(a, b) = max\{1 - a, b\}$ $(a, b) = max\{0, a + b - 1\}$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(a, b) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b) = max\{1 - a, b\}$ $(abc) = min\{1, a + b)$ $(bounded diff.)$ $Imp(a, b$	example: QL implic	cation Imp(a, b) = s(c(a),	t(a, b))	axioms for fuzzy implications	
Fuzzy Logic Lecture 03	 t(a, b) = min { a, b } s(a,b) = max{ a, b } 2. "NN" implication ☺ t(a, b) = ab s(a,b) = a + b - ab 3. Kleene-Dienes imp t(a, b) = max{ 0, a - 	k (std.) (Klir/Yuan 1994) (algebr. prd.) Imp(a, (algebr. sum) (algebr. sum) (blication + b – 1 } (bounded diff.) Imp(a,	b) = 1 – a + a²b	2. $a \le b$ implies $Imp(x, a) \le Imp(x, b)$ 3. $Imp(0, a) = 1$ 4. $Imp(1, b) = b$ 5. $Imp(a, a) = 1$ 6. $Imp(a, Imp(b, x)) = Imp(b, Imp(a, x))$ 7. $Imp(a, b) = 1$ iff $a \le b$ 8. $Imp(a, b) = Imp(c(b), c(a))$	monotone in 2nd argument dominance of falseness neutrality of trueness identity exchange property boundary condition contraposition
Not all S-, R-, QL- implications obey all axioms for fuzzy implications!Theorem: ImplicationImplicationValid Axioms ImplicationsKleene-Dienes1 2 3 4 - 6 - 8 9	ortmund	G. Rudolph: Co	33		G. Rudolph: Computational Intelligence • Winter Term 2021
(1234 - 0 - 09) = 0	Not all S-, R-, QL- imp		y implications!	Theorem: Imp: $[0,1] \times [0,1] \rightarrow [0,1]$ satisfies axioms	
Reichenbach1 2 3 4 - 6 - 8 9Łukasiewicz1 2 3 4 5 6 7 8 9Gödel1 2 3 4 5 6 7Goguen1 2 3 4 5 6 7 - 9Zadeh1 2 3 4 9Klir-Yuan- 2 3 4 9Klir-Yuan 9Klir-Yuan 9Klir-Yuan 9Klir-Yuan 9Klir-Yuan 9Klir-Yuan 9Klir-Yuan	Kleene-Dienes Reichenbach Łukasiewicz Gödel Goguen Zadeh	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	 f(0) = 0 ∀a, b ∈ [0,1]: Imp(a, b) = f⁻¹(min{ ∀a ∈ [0,1]: c(a) = f⁻¹(f(1) - f(a)) Proof: Smets & Magrez (1987), p. 337f 	f(1) – f(a) + f(b), f(1)})

Fuzzy Logic

Lecture 03

choosing an "appropriate" fuzzy implication ...

apt quotation: (Klir & Yuan 1995, p. 312)

"To select an appropriate fuzzy implication for approximate reasoning under each particular situation is a difficult problem."

guideline:

GMP, GMT, GHS should be compatible with MP, MT, HS for fuzzy implication in calculations with relations: $B(y) = \sup \{ t(A(x), Imp(A(x), B(y))) : x \in X \}$

example: Gödel implication for t-norm = bounded difference

U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2021/22 37