

Computational Intelligence

Winter Term 2021/22

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

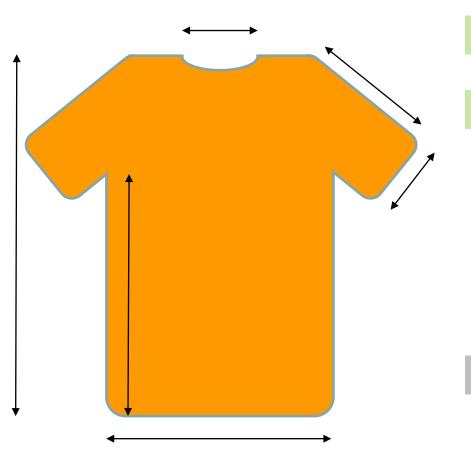
Fakultät für Informatik

TU Dortmund

Fuzzy Clustering

<u>Introductory Example:</u> Textile Industry

→ production of T-shirts (for men)



best for producer: one size

VS.

best for consumer: made-to-measure

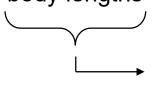
⇒ compromize: S, M, L, XL, 2XL

5 sizes

→ OK, but which lengths for which size?

idea:

- select, say, 2000 men at random and measure their "body lengths"
- arrange these 2000 men into five disjoint groups
 such that



arm's length, collar size, chest girth, ...

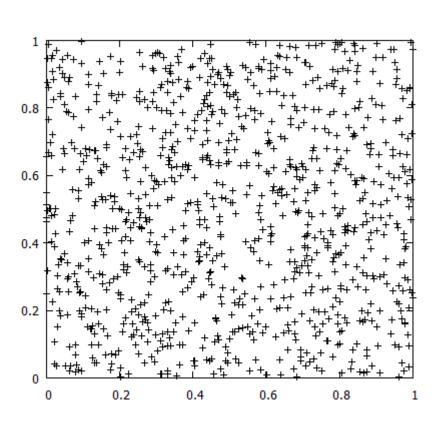
- deviations from mean of group as small as possible
- differences between group means as large as possible

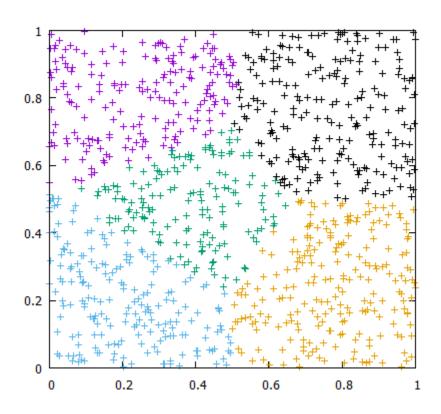
in general:

arrange objects into groups / clusters such that

- elements within a cluster are as homogeneous as possible
- elements across clusters are as heterogeneous as possible

numerical example: 1000 points uniformly sampled in $[0,1] \times [0,1] \rightarrow$ form 5 cluster





given data points $x_1, x_2, ..., x_N \in \mathbb{R}^n$

- <u>objective:</u> group data points into cluster
 - such that
 - points within cluster are as homogeneous as possible
 - points across clusters are as heterogeneous as possible

 \Rightarrow crisp clustering is just a partitioning of data set { $x_1, x_2, ..., x_N$ }, i.e.,

$$\bigcup_{k=1}^K C_k = \{\mathbf{x_1, x_2, ..., x_N}\} \quad \text{and} \quad \forall j \neq k: C_j \cap C_k = \emptyset$$

where C_k is Cluster k and K denotes the number of clusters.

Constraint: $\forall k = 1, \dots, K : |C_k| \ge 1$ hence $1 \le K \le N$

Complexity: How many choices to assign N objects into K clusters?

more precisely:

- → objects are distinguishable / labeled
- → clusters are nondistinguishable / unlabeled **and** nonempty

$$\Rightarrow \text{Stirling number of 2nd kind} \quad S(\mathsf{N},K) \ = \ \frac{1}{K!} \, \sum_{i=1}^K (-1)^{K-i} \, \binom{K}{i} \cdot i^\mathsf{N} \quad \sim \frac{K^\mathsf{N}}{K!}$$

N/K	1	2	3	4	5
10	1	511	9,330	34,105	42,525
11	1	1,023	28,501	145,750	246,730
12	1	2,047	86,526	611,501	1,379,400
13	1	4,095	261,625	2,532,530	7,508,501
14	1	8,191	788,970	10,391,745	40,075,035
15	1	16, 383	2, 375, 101	42, 355, 950	210, 766, 920

⇒ enumeration hopeless! ⇒ iterative improvement procedure required!

idea: define objective function

that measures compactness of clusters and quality of partition

- → elements in cluster C_i should be as homogeneous as possible!
- → sum of squared distances to unknown center y should be as small as possible

$$\rightarrow$$
 find y with $\sum_{i \in C_i} d(x_i, y)^2 \rightarrow \min!$

typically,
$$d(x_i, y) = ||x_i - y|| = \sqrt{(x_i - y)'(x_i - y)}$$
 (Euclidean norm)

$$\frac{d}{dy} \sum_{i \in C_i} (x_i - y)'(x_i - y) = -2 \sum_{i \in C_i} (x_i - y) \stackrel{!}{=} 0$$

$$\Rightarrow \sum_{i \in C_j} x_i \stackrel{!}{=} \sum_{i \in C_j} y = |C_j| \cdot y \qquad \Rightarrow y = \frac{1}{|C_j|} \sum_{i \in C_j} x_i =: \bar{x}_j$$

→ elements in <u>each</u> cluster C_i should be as homogeneous as possible!

$$\rightarrow$$
 find partition $C = (C_1, \dots, C_K)$ with $D(C) = \sum_{j=1}^K \sum_{i \in C_j} d(x_i, \bar{x}_j)^2 \rightarrow \min!$

Definition

A partition C^* is optimal if

$$D(C^*) = \min\{ D(C) : C \in P(N, K) \}$$

where P(N, K) denotes all partitions of N elements in K clusters.

Theorem

$$\min_{C \in P(N,K)} D(C) = \max_{C \in P(N,K)} \sum_{j=1}^{K} |C_j| \cdot ||\bar{x}_j - \bar{x}||$$

where \bar{x} is the mean of all x.

```
\forall k=1,\ldots,K: set C_k=\emptyset
\forall x \in \{x_1, \dots, x_N\}: assign x to some cluster C_k
set t=0 and D^{(t)}=\infty
repeat
   t = t + 1
  \forall k = 1, \dots, K: \ \bar{x}_k = \frac{1}{|C_k|} \sum_{x \in C_k} x
       \forall i = 1, \ldots, N : d_{ik} = d(x_i, \bar{x}_k)
                                                   distance to center of cluster k
       let k^* be such that d_{ik^*} = \min\{d_{ik} : k = 1, ..., K\}
       assign x_i to C_{k^*}
   D^{(t)} = \sum \sum d(x, \bar{x}_k)
             k=1 x\in C_k
until D^{(t-1)} - D^{(t)} < \varepsilon
```

objective for crisp clustering:

find partition
$$C = (C_1, \dots, C_K)$$
 with $D(C) = \sum_{j=1}^K \sum_{i \in C_j} d(x_i, \bar{x}_j)^2 \to \min!$

→ rewrite objective:

find partition
$$C = (C_1, \dots, C_K)$$
 with $D(C) = \sum_{j=1}^{N} \sum_{i=1}^{N} u_{ij} \cdot d(x_i, \bar{x}_j)^2 \to \min!$

objective for fuzzy clustering:

find partition
$$C=(C_1,\ldots,C_K)$$
 with $D(C)=\sum_{j=1}^K\sum_{i=1}^N u_{ij}^m\cdot d(x_i,\bar{x}_j)^2\to \min!$
$$u_{ij}\in[0,1]\subset\mathbb{R}, m>1$$

find partition
$$C = (C_1, \dots, C_K)$$
 with $D(C) = \sum_{j=1}^K \sum_{i=1}^N u_{ij}^m \cdot d(x_i, \bar{x}_j)^2 \to \min!$

where

 $u_{ij} \in [0,1] \subset \mathbb{R}$ denotes membership of x_i to cluster C_i

m>1 denotes a fixed fuzzifier (controls / affects membership function)

subject to

$$\sum_{j=1}^{K} u_{ij} = 1 \qquad \forall i = 1, \dots, N$$

$$0 < \sum_{i=1}^{N} u_{ij} < N \qquad \forall j = 1, \dots, K$$

each x_i distributes membership completely over clusters C_1, \ldots, C_K \rightarrow normalization

$$0 < \sum_{ij} u_{ij} < N \qquad \forall j = 1, \dots, K$$

at least one element belongs to some extent to a certain cluster, but not all elements to a single cluster

two questions:

- (a) how to define and calculate centers \bar{x}_i ?
- (b) how to obtain optimal memberships u_{ij} ?

ad a) let
$$d(x_i, \bar{x}_j) = ||x_i - \bar{x}_j||_2$$

$$\frac{d}{d\bar{x}_j} \sum_{i=1}^N u_{ij}^m \cdot (x_i - \bar{x}_j)'(x_i - \bar{x}_j) = -2 \sum_{i=1}^N u_{ij}^m \cdot (x_i - \bar{x}_j) \stackrel{!}{=} 0$$

$$\Leftrightarrow \sum_{i=1}^{N} u_{ij}^{m} x_{i} \stackrel{!}{=} \sum_{i=1}^{N} u_{ij}^{m} \bar{x}_{j} \qquad \Leftrightarrow \qquad \left| \bar{x}_{j} \right| = \frac{\sum_{i=1}^{N} u_{ij}^{m} x_{i}}{\sum_{i=1}^{N} u_{ij}^{m}} \qquad \to \text{weighted mean!}$$

$$\bar{x}_{j} = \frac{\sum_{i=1}^{N} u_{ij}^{m} x_{i}}{\sum_{i=1}^{N} u_{ij}^{m}}$$

ad b) let
$$d_{ij} := d(x_i, \bar{x}_j) = \|x_i - \bar{x}_j\|_2$$

apply Lagrange multiplier method:

$$\frac{\partial}{\partial u_{ij}} \sum_{j=1}^{K} \sum_{i=1}^{N} u_{ij}^{m} \cdot d_{ij}^{2} - \sum_{i=1}^{N} \lambda_{i} \left(\sum_{j=1}^{K} u_{ij} - 1 \right) = m u_{ij}^{m-1} \cdot d_{ij}^{2} - \lambda_{i} \stackrel{!}{=} 0$$

without constraints $\rightarrow u_{ij}^* = 0$

$$u_{ij}^* = \left(\frac{\lambda_i}{m \cdot d_{ij}^2}\right)^{\frac{1}{m-1}} \longleftarrow$$

$$\sum_{j=1}^{K} u_{ij} = \sum_{j=1}^{K} \left(\frac{\lambda_{i}}{m \cdot d_{ij}^{2}}\right)^{\frac{1}{m-1}} = \sum_{j=1}^{K} \frac{\lambda_{i}^{\frac{1}{q}}}{(m \cdot d_{ij}^{2})^{\frac{1}{q}}} = \lambda_{i}^{\frac{1}{q}} \sum_{j=1}^{K} \frac{1}{(m \cdot d_{ij}^{2})^{\frac{1}{q}}} \stackrel{!}{=} 1$$

$$\Rightarrow \lambda_{i}^{*} = \left[\sum_{k=1}^{K} \frac{1}{(m \cdot d_{ik}^{2})^{\frac{1}{q}}}\right]^{-q}$$

after insertion:

after insertion:
$$u_{ij}^* = \left(\frac{1}{m \cdot d_{ij}^2} \left[\frac{1}{\sum\limits_{k=1}^K \left(\frac{1}{m \cdot d_{ik}^2}\right)^{\frac{1}{m-1}}}\right]^{m-1}\right)^{\frac{1}{m-1}} = \left[\sum\limits_{k=1}^K \left(\frac{d_{ij}}{d_{ik}}\right)^{\frac{2}{m-1}}\right]^{-1}$$

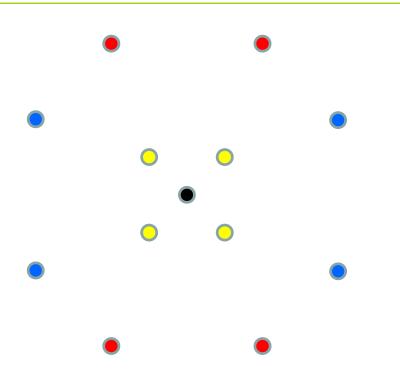
choose $K \in \mathbb{N}$ and m > 1choose u_{ij} at random (obeying constraints) repeat

 $\forall j=1,\ldots,K$: calculate centers \bar{x}_i $\forall i = 1, \ldots, N$: let $J_i = \{j : x_i = \bar{x}_i\}$ if $J_i = \emptyset$ determine memberships u_{ij} else choose u_{ij} such that $\sum_{i \in J_i} u_{ij} = 1$ and $u_{ij} = 0$ for $j \notin J_i$

until $D(C^{(t)}) - D(C^{(t+1)}) < \varepsilon$ or $t = t_{max}$

problems:

- choice of *K* calculate quality measure for each #cluster; then choose best
- choice of *m* try some values; typical: m=2; use interval → fuzzy type-2



black dot is center of

- red cluster
- blue cluster
- yellow cluster

in case of equal weights

$$u_{ij}$$
 = 1 / $|J_i|$ for $j \in J_i$ appears plausible

but: different values algorithmically better

→ cluster centers more likely to separate again (→ tiny randomization?)

Measures for Cluster Quality

Lecture 05

Partition Coefficient

$$PC(C_1,...,C_K) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{K} u_{ij}^2$$

$$\begin{array}{l} \text{maximum if } u_{ij} \in \{0,1\} \rightarrow \text{crisp partition} \\ \text{minimum if } u_{ij} = \frac{1}{K} & \rightarrow \text{entirely fuzzy} \end{array} \right\} \qquad \frac{1}{K} \leq \text{PC}(C_1,\ldots,C_K) \leq 1$$

$$\leq \mathsf{PC}(C_1,\ldots,C_K) \leq 1$$

Partition Entropy

$$\mathsf{PE}(C_1,\ldots,C_K) \ = \ -\frac{1}{N}\sum^N\sum^K u_{ij}\cdot \log_2(u_{ij}) \qquad \qquad \text{(``smaller is better'')}$$

$$0 \leq \mathsf{PE}(C_1, \dots, C_K) \leq \log_2(K)$$