

Computational Intelligence

Winter Term 2021/22

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

technische universität

Plan for Today

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Lecture 06

Design of Evolutionary Algorithms

Lecture 06

Three tasks:

- 1. Choice of an appropriate problem representation.
- 2. Choice / design of variation operators acting in problem representation.
- 3. Choice of strategy parameters (includes initialization).

ad 1) different "schools":

- (a) operate on binary representation and define genotype/phenotype mapping
 - + can use standard algorithm
 - mapping may induce unintentional bias in search
- (b) no doctrine: use "most natural" representation
 - must design variation operators for specific representation
 - + if design done properly then no bias in search

Lecture 06

ad 1a) genotype-phenotype mapping

Design of Evolutionary Algorithms

• Design of Evolutionary Algorithms

Design Guidelines

Genotype-Phenotype Mapping

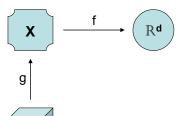
Maximum Entropy Distributions

original problem $f: X \to \mathbb{R}^d$

 \mathbb{B}^{n}

■ technische universität dortmund

scenario: no standard algorithm for search space X available



- standard EA performs variation on binary strings b $\in \mathbb{B}^n$
- fitness evaluation of individual b via (f g)(b) = f(g(b)) where g: $\mathbb{B}^n \to X$ is genotype-phenotype mapping
- selection operation independent from representation

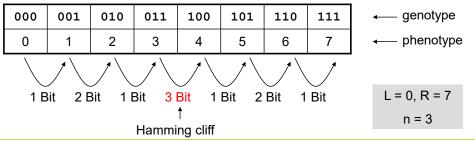
Design of Evolutionary Algorithms

Lecture 06

Genotype-Phenotype-Mapping $B^n \rightarrow [L, R] \subset R$

$$x = L + \frac{R - L}{2^{n} - 1} \sum_{i=0}^{n-1} b_{n-i} 2^{i}$$

→ Problem: *hamming cliffs*



technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2021/22

ullet Standard encoding for $b \in \mathbb{B}^n$

Genotype-Phenotype-Mapping $\mathbb{B}^n \to [L, R] \subset \mathbb{R}$

• Gray encoding for $b \in B^n$

Design of Evolutionary Algorithms

Let
$$a \in \mathbb{B}^n$$
 standard encoded. Then $b_i = \begin{cases} a_i, & \text{if } i = 1 \\ a_{i-1} \oplus a_i, & \text{if } i > 1 \end{cases}$

000	001	011	010	110	111	101	100	←— genotype
0	1	2	3	4	5	6	7	← phenotype

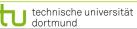
OK, no hamming cliffs any longer ...

⇒ small changes in phenotype "lead to" small changes in genotype

since we consider evolution in terms of Darwin (not Lamarck):

⇒ small changes in genotype lead to small changes in phenotype!

but: 1-Bit-change: $000 \rightarrow 100 \Rightarrow \otimes$



G. Rudolph: Computational Intelligence • Winter Term 2021/22

Lecture 06

Design of Evolutionary Algorithms

Lecture 06

Genotype-Phenotype-Mapping $\mathbb{B}^n \to \mathbb{P}^{\log(n)}$ (example only)

 \bullet e.g. standard encoding for b $\in \, \mathbb{B}^n$

individual:

010	101	111	000	110	001	101	100	← genotype
0	1	2	3	4	5	6	7	← index

consider index and associated genotype entry as unit / record / struct; sort units with respect to genotype value, old indices yield permutation:

3 5 0 7 1 6 4 2 ← old index	ſ	000	001	010	100	101	101	110	111	←— genotype
		٠.	5	0	7	1	6	4	2	← old index

= permutation

Design of Evolutionary Algorithms

Lecture 06

ad 1a) genotype-phenotype mapping

typically required: strong causality

- → small changes in individual leads to small changes in fitness
- → small changes in genotype should lead to small changes in phenotype

but: how to find a genotype-phenotype mapping with that property?

necessary conditions:

technische universität

- 1) g: $\mathbb{B}^n \to X$ can be computed efficiently (otherwise it is senseless)
- 2) g: $\mathbb{B}^n \to X$ is surjective (otherwise we might miss the optimal solution)
- 3) g: $\mathbb{B}^n \to X$ preserves closeness (otherwise strong causality endangered)

Let $d(\cdot, \cdot)$ be a metric on \mathbb{B}^n and $d_x(\cdot, \cdot)$ be a metric on X.

 $\forall x, y, z \in \mathbb{B}^n : d(x, y) \le d(x, z) \Rightarrow d_X(g(x), g(y)) \le d_X(g(x), g(z))$

Design of Evolutionary Algorithms

Lecture 06

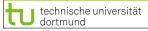
ad 1b) use "most natural" representation

typically required: strong causality

- → small changes in individual leads to small changes in fitness
- → need variation operators that obey that requirement

but: how to find variation operators with that property?

 \Rightarrow need design guidelines ...



G. Rudolph: Computational Intelligence • Winter Term 2021/22

Design of Evolutionary Algorithms

Lecture 06

ad 2) design guidelines for variation operators

a) reachability

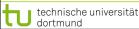
every $x \in X$ should be reachable from arbitrary $x_0 \in X$ after finite number of repeated variations with positive probability bounded from 0

b) unbiasedness

unless having gathered knowledge about problem variation operator should not favor particular subsets of solutions ⇒ formally: maximum entropy principle

c) control

variation operator should have parameters affecting shape of distributions; known from theory: weaken variation strength when approaching optimum



G. Rudolph: Computational Intelligence • Winter Term 2021/22

10

Design of Evolutionary Algorithms

Lecture 06

ad 2) design guidelines for variation operators in practice

binary search space $X = \mathbb{B}^n$

variation by k-point or uniform crossover and subsequent mutation

a) reachability:

regardless of the output of crossover we can move from $x \in B^n$ to $y \in B^n$ in 1 step with probability

$$p(x,y) = p_m^{H(x,y)} (1 - p_m)^{n - H(x,y)} > 0$$

where H(x,y) is Hamming distance between x and y.

Since $\min\{p(x,y): x,y \in \mathbb{B}^n\} = \delta > 0$ we are done.

Design of Evolutionary Algorithms

Lecture 06

b) unbiasedness

don't prefer any direction or subset of points without reason

⇒ use maximum entropy distribution for sampling!

properties:

technische universität

- distributes probability mass as uniform as possible
- additional knowledge can be included as constraints:
- \rightarrow under given constraints sample as uniform as possible

Design of Evolutionary Algorithms

Lecture 06

Formally:

Definition:

Let X be discrete random variable (r.v.) with $p_k = P\{X = x_k\}$ for some index set K. The quantity

 $H(X) = -\sum_{k \in K} p_k \log p_k$

is called the *entropy of the distribution* of X. If X is a continuous r.v. with p.d.f. $f_{x}(\cdot)$ then the entropy is given by

$$H(X) = -\int_{-\infty}^{\infty} f_X(x) \log f_X(x) dx$$

The distribution of a random variable X for which H(X) is maximal is termed a maximum entropy distribution.

Excursion: Maximum Entropy Distributions

Lecture 06

Knowledge available:

Discrete distribution with support $\{x_1, x_2, \dots x_n\}$ with $x_1 < x_2 < \dots x_n < \infty$

$$p_k = P\{X = x_k\}$$

⇒ leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^n p_k \log p_k
ightarrow \max!$$
 s.t. $\sum_{k=1}^n p_k = 1$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right)$$

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Excursion: Maximum Entropy Distributions

Lecture 06

$$L(p,a) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right)$$

partial derivatives:

U technische universität dortmund

$$\frac{\partial L(p,a)}{\partial p_k} = -1 - \log p_k + a \stackrel{!}{=} 0 \qquad \Rightarrow p_k \stackrel{!}{=} e^{a-1}$$

$$\frac{\partial L(p,a)}{\partial a} = \sum_{k=1}^n p_k - 1 \stackrel{!}{=} 0$$

$$p_k = \frac{1}{n}$$
 uniform distribution
$$\frac{1}{n} \sum_{k=1}^n p_k = \sum_{k=1}^n e^{a-1} = n e^{a-1} \stackrel{!}{=} 1 \qquad \Leftrightarrow \qquad e^{a-1} = \frac{1}{n}$$

Excursion: Maximum Entropy Distributions

Lecture 06

Knowledge available:

technische universität dortmund

Discrete distribution with support $\{1, 2, ..., n\}$ with $p_k = P\{X = k\}$ and E[X] = v

⇒ leads to nonlinear constrained optimization problem:

$$-\sum\limits_{k=1}^n p_k \log p_k \longrightarrow ext{max!}$$
 s.t. $\sum\limits_{k=1}^n p_k = 1$ and $\sum\limits_{k=1}^n k \, p_k =
u$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu\right)$$

Lecture 06

$$L(p, a, b) = -\sum_{k=1}^{n} p_k \log p_k + a \left(\sum_{k=1}^{n} p_k - 1\right) + b \left(\sum_{k=1}^{n} k \cdot p_k - \nu\right)$$

partial derivatives:

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=1}^{n} p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(*)}{=} \sum_{k=1}^{n} k p_k - \nu \stackrel{!}{=} 0 \qquad \sum_{k=1}^{n} p_k = e^{a-1} \sum_{k=1}^{n} (e^b)^k \stackrel{!}{=} 1$$

(continued on next slide)

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2021/22

Excursion: Maximum Entropy Distributions

Lecture 06

$$\Rightarrow e^{a-1} = \frac{1}{\sum_{k=1}^{n} (e^b)^k} \qquad \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=1}^{n} (e^b)^i}$$

$$\Rightarrow$$
 discrete Boltzmann distribution $p_k = rac{q^k}{\sum\limits_{i=1}^n q^i}$ $(q=e^b)$

 \Rightarrow value of q depends on v via third condition: (\star)

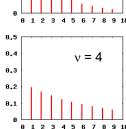
$$\sum_{k=1}^{n} k p_{k} = \frac{\sum_{k=1}^{n} k q^{k}}{\sum_{i=1}^{n} q^{i}} = \frac{1 - (n+1) q^{n} + n q^{n+1}}{(1-q)(1-q^{n})} \stackrel{!}{=} \nu$$

U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2021/22

Excursion: Maximum Entropy Distributions

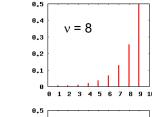
θ.5 θ.4 θ.3 θ.2 θ.1 θ 1 2 3 4 5 6 7 8 9 1θ

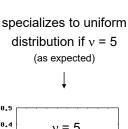
0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 5 0 1 2 3 4 5 6 7 8 9 10



technische universität

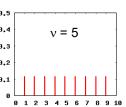
Distributions Lecture 06

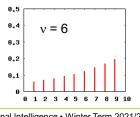




Boltzmann distribution

(n = 9)





G. Rudolph: Computational Intelligence • Winter Term 2021/22

Excursion: Maximum Entropy Distributions

Lecture 06

Knowledge available:

Discrete distribution with support { 1, 2, ..., n } with E[X] = v and V[X] = η^2

 \Rightarrow leads to nonlinear constrained optimization problem:

$$-\sum_{k=1}^n p_k \log p_k \to \max!$$
 s.t. $\sum_{k=1}^n p_k = 1$ and $\sum_{k=1}^n k p_k = \nu$ and $\sum_{k=1}^n (k-\nu)^2 p_k = \eta^2$

<u>solution:</u> in principle, via Lagrange (find stationary point of Lagrangian function)

but very complicated analytically, if possible at all

⇒ consider special cases only

note: constraints are linear equations in p_k

Lecture 06

Special case: n = 3 and E[X] = 2 and $V[X] = n^2$

Linear constraints uniquely determine distribution:

I.
$$p_1 + p_2 + p_3 = 1$$

II. $p_1 + 2p_2 + 3p_3 = 2$
III. $p_1 + 0 + p_3 = \eta^2$
III. $p_1 + 0 + p_3 = \eta^2$
III. $p_2 + 2p_3 = 1$
 $p_2 + 2p_3 = 1$
 $p_3 = \frac{\eta^2}{2}$

$$\Rightarrow p = \left(\frac{\eta^2}{2}, 1 - \eta^2, \frac{\eta^2}{2}\right) \qquad \begin{array}{c} \eta^2 = \frac{1}{4} & \eta^2 = \frac{2}{3} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta_2 \cdot \theta} \\ \frac{\theta_1 \cdot \theta}{\theta_2 \cdot \theta} & \frac{\theta_2 \cdot \theta}{\theta} \\ \frac{\theta_1 \cdot \theta}{\theta} & \frac{\theta}{\theta} \\ \frac{\theta}{\theta} & \frac{\theta}{\theta} \\ \frac{\theta}{$$

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Lecture 06

Excursion: Maximum Entropy Distributions

$$L(p,a,b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

partial derivatives:

$$\frac{\partial L(p,a,b)}{\partial p_k} = -1 - \log p_k + a + b k \stackrel{!}{=} 0 \qquad \Rightarrow p_k = e^{a-1+b k}$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=0}^{\infty} p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial a} = \sum_{k=0}^{\infty} p_k - 1 \stackrel{!}{=} 0$$

$$\frac{\partial L(p,a,b)}{\partial b} \stackrel{(*)}{=} \sum_{k=0}^{\infty} k p_k - \nu \stackrel{!}{=} 0$$

$$\sum_{k=0}^{\infty} p_k = e^{a-1} \sum_{k=0}^{\infty} (e^b)^k \stackrel{!}{=} 1$$

(continued on next slide)

Excursion: Maximum Entropy Distributions

Lecture 06

Knowledge available:

Discrete distribution with unbounded support $\{0, 1, 2, ...\}$ and E[X] = v

⇒ leads to infinite-dimensional nonlinear constrained optimization problem:

$$-\sum_{k=0}^{\infty}p_k\log p_k \to \max!$$
 s.t.
$$\sum_{k=0}^{\infty}p_k = 1 \quad \text{and} \quad \sum_{k=0}^{\infty}k\,p_k = \nu$$

solution: via Lagrange (find stationary point of Lagrangian function)

$$L(p,a,b) = -\sum_{k=0}^{\infty} p_k \log p_k + a \left(\sum_{k=0}^{\infty} p_k - 1\right) + b \left(\sum_{k=0}^{\infty} k \cdot p_k - \nu\right)$$

technische universität

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Excursion: Maximum Entropy Distributions

Lecture 06

$$\Rightarrow e^{a-1} = \frac{1}{\sum_{k=0}^{\infty} (e^b)^k} \qquad \Rightarrow p_k = e^{a-1+bk} = \frac{(e^b)^k}{\sum_{i=0}^{\infty} (e^b)^i}$$

set
$$q=e^b$$
 and insists that $q<1$ \Rightarrow $\sum_{k=0}^{\infty}q^k$ $=$ $\frac{1}{1-q}$ insert

$$p_k = (1-q)\,q^k$$
 for $k=0,1,2,\ldots$ geometrical distribution

it remains to specify q; to proceed recall that $\sum_{k=0}^{\infty} k \, q^k \, = \, \frac{q}{(1-a)^2}$

Lecture 06

value of q depends on v via third condition: (*)

$$\sum_{k=0}^{\infty} k \, p_k \, = \, \frac{\sum_{k=0}^{\infty} k \, q^k}{\sum_{i=0}^{\infty} q^i} \, = \, \frac{q}{1-q} \, \stackrel{!}{=} \, \nu$$

$$\Rightarrow q = \frac{\nu}{\nu + 1} = 1 - \frac{1}{\nu + 1}$$

$$\Rightarrow p_k = \frac{1}{\nu+1} \left(1 - \frac{1}{\nu+1} \right)^k$$



G. Rudolph: Computational Intelligence • Winter Term 2021/22

Lecture 06 **Excursion: Maximum Entropy Distributions**

Overview:

support { 1, 2, ..., n } ⇒ discrete uniform distribution

and require $E[X] = \theta$ ⇒ Boltzmann distribution

⇒ N.N. (**not** Binomial distribution) and require $V[X] = \eta^2$

⇒ not defined! support N

and require $E[X] = \theta$ ⇒ *geometrical* distribution

and require $V[X] = \eta^2$ \Rightarrow ?

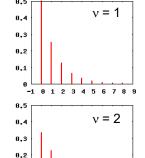
support \mathbb{Z} \Rightarrow not defined!

and require $E[|X|] = \theta$ ⇒ bi-geometrical distribution (discrete Laplace distr.)

and require $E[|X|^2] = \eta^2$ ⇒ N.N. (discrete Gaussian distr.)

technische universität

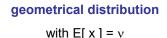
Excursion: Maximum Entropy Distributions

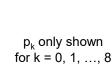


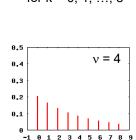
technische universität

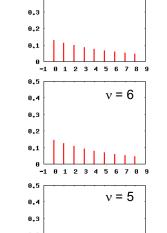
dortmund

v = 3









v = 7

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Excursion: Maximum Entropy Distributions

Lecture 06

support [a,b] $\subset \mathbb{R}$ ⇒ uniform distribution

support \mathbb{R}^+ with $E[X] = \theta \implies$ Exponential distribution

support R

0.3

with E[X] = θ , V[X] = η^2 \Rightarrow normal / Gaussian distribution N(θ , η^2)

support Rn

with $E[X] = \theta$

technische universität

and Cov[X] = C \Rightarrow multinormal distribution N(θ , C)

expectation vector $\in \mathbb{R}^n$

covariance matrix $\in \mathbb{R}^{n,n}$ positive definite:

 $\forall x \neq 0 : x'Cx > 0$

Lecture 06

for permutation distributions?

ightarrow uniform distribution on all possible permutations

```
 \begin{array}{l} \text{set } \mathbf{v}[j] = j \text{ for } j = 1,\ 2,\ \ldots,\ n \\ \\ \text{for } i = n \text{ to } 1 \text{ step } -1 \\ \\ \text{draw } k \text{ uniformly at random from } \{\ 1,\ 2,\ \ldots,\ i\ \} \\ \\ \text{swap } \mathbf{v}[i] \text{ and } \mathbf{v}[k] \\ \\ \text{endfor} \\ \end{array} \right) \\ \begin{array}{l} \text{generates permutation uniformly at random in } \\ \\ \Theta(n) \text{ time} \\ \end{array}
```

Guideline:

Only if you know something about the problem a priori or

if you have learnt something about the problem during the search

⇒ include that knowledge in search / mutation distribution (via constraints!)

G. Rudolph: Computational Intelligence • Winter Term 2021/22

29

