
technische universität

dortmund

	 A second sec second second sec
	technische universität
ιu	dortmund

Δ

data augmentation (counteracts overfitting)

- \rightarrow extending training set by slightly perturbed true training examples
- best applicable if inputs are **images**: translate, rotate, add noise, resize, ...

if x is real vector then adding e.g. small gaussian noise

 \rightarrow here, utility disputable (artificial sample may cross true separating line)

extra costs for acquiring additional annotated data are inevitable!

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2021/22

- search in subspaces \rightarrow counteracts greediness \rightarrow better generalization accelerates optimization methods (parallelism possible) choice of batch size b

partitioning of training set B into (mini-) batches of size b

b = 1

b = |B|

b large	\Rightarrow better approximation of gradient
b small	\Rightarrow better generalization

b also depends on available hardware b too small \Rightarrow multi-cores underemployed

technische universität dortmund

11

stochastic gradient descent

traditionally: 2 extreme cases

- after each training example

- after all training examples

update of weights

G. Rudolph: Computational Intelligence • Winter Term 2021/22

often $b \approx 100$ (empirically)

12

now:

update of weights

- after b training examples

where 1 < b < |B|

Deep Neural Networks Lecture 12 **Deep Neural Networks** Lecture 12 cost functions cost functions regression • classification N training samples (x_i, y_i) where $y_i \in \{1, ..., C\}$, C = #classes N training samples (x_i, y_i) insist that $f(x_i; \theta) = y_i$ for i=1,..., N \rightarrow want to estimate probability of different outcomes for unknown sample if $f(x; \theta)$ linear in θ then $\theta^T x_i = y_i$ for i=1,..., N or $X \theta = y$ \rightarrow decision rule: choose class with highest probability (given the data) \Rightarrow best choice for θ : least square estimator (LSE) idea: use maximum likelihood estimator (MLE) \Rightarrow (X θ - y)^T (X θ - y) \rightarrow min! = estimate unknown parameter θ such that likelihood of sample $x_1, ..., x_N$ gets maximal as a function of θ in case of MLP: $f(x; \theta)$ is nonlinear in θ \Rightarrow best choice for θ : (nonlinear) least square estimator; aka TSSE likelihood function $\overline{L(\theta; x_1, \dots, x_N)} := f_{X_1, \dots, X_N}(x_1, \dots, x_N; \theta) = \prod_{i=1}^N f_X(x_i; \theta) \to \max_{\theta}!$ $\Rightarrow \sum_{i} (f(\mathbf{x}_{i}; \theta) - \mathbf{y}_{i})^{2} \rightarrow \min_{\theta}!$ G. Rudolph: Computational Intelligence • Winter Term 2021/22 G. Rudolph: Computational Intelligence • Winter Term 2021/22 technische universität dortmund technische universität 13 14 **Deep Neural Networks** Lecture 12 Lecture 12 **Deep Neural Networks**

in case of classification

use softmax function $P\{y = j \mid x\} = \frac{e^{w_j^T x + b_j}}{\sum_{i=1}^C e^{w_i^T x + b_i}}$ in output layer

 \rightarrow multiclass classification: probability of membership to class j = 1, ..., C

 \rightarrow class with maximum excitation w'x+b has maximum probabilty

 \rightarrow decision rule: element x is assigned to class with maximum probability

likelihood
$$L(\hat{p}; x_1, \dots, x_N) = \prod_{k=1}^{C} P\{X_k = x_k\} = \prod_{i=1}^{C} \hat{p}_i^{N \cdot \hat{q}_i} \to \max!$$

 $\log L = \log \left(\prod_{i=1}^{C} \hat{p}_i^{N \cdot \hat{q}_i}\right) = \sum_{i=1}^{C} \log \hat{p}_i^{N \cdot \hat{q}_i} = N \underbrace{\sum_{i=1}^{C} \hat{q}_i \cdot \log \hat{p}_i}_{-H(\hat{q},\hat{p})} \to \max!$

N

here: random variable $X \in \{1, ..., C\}$ with $P\{X = i\} = q_i$ (true, but unknown)

 $\hat{q}_i = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{[x_j=i]} \Rightarrow \text{there are } N \cdot \hat{q}_i \text{ samples of class } i \text{ in training set}$

 \Rightarrow the neural network should output \hat{p} as close as possible to \hat{q} ! [actually: to q]

C

 \rightarrow we use relative frequencies of training set $x_1, ..., x_N$ as estimator of q_i

 \Rightarrow maximizing $\log L$ leads to same solution as minimizing **cross-entropy** $H(\hat{q}, \hat{p})$

technische universität

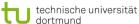
filter / kernel

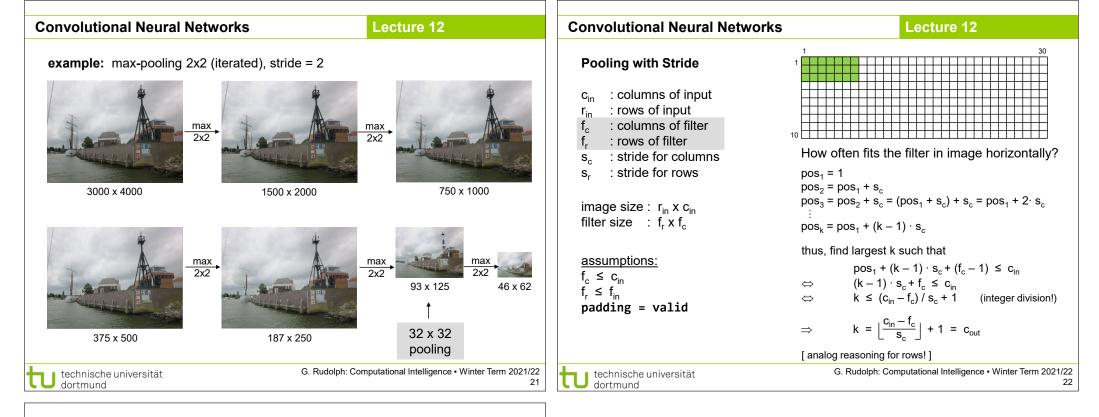
well known in image processing; typically hand-crafted! 1 1 1 1 1 1 1 1 here: values of filter matrix learnt in CNN ! -1 -1 -1 -1 actually: many filters active in CNN

stride

= distance between two applications of a filter (horizontal s_h / vertical s_v)

 \rightarrow leads to smaller images if s_h or s_y > 1


padding


- = treatment of border cells if filter does not fit in image
- "valid" : apply only to cells for which filter fits \rightarrow leads to smaller images
- "same" : add rows/columns with zero cells; apply filter to all cells (\rightarrow same size)

-1 -1 -1 -1

e.g. horizontal line detection

2. nonlinear activation $a(x) = ReLU(x^T W + c)$ 3. pooling in principle: summarizing statistic of nearby outputs e.g. **max-pooling** $m(i,j) = max(l(i+a, j+b) : a,b = -\delta, ..., 0, ..., \delta)$ for $\delta > 0$ - also possible: mean, median, matrix norm, ... - can be used to reduce matrix / output dimensions

23

Convolutional Neural Networks

Lecture 12

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts
- flatten layer (\rightarrow converts k-D matrix to 1-D matrix required for MLP input layer)
- fully connected MLP

examples:

