Computational Intelligence

Winter Term 2021/22

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Dynamical Systems with Discrete Time

 Θ parameter space with parameters $\theta \in \Theta$

Lecture 13

 ${\cal S}$ state space with states $s\in{\cal S}$

 $s^{(t)}$ is a state $\in S$ at time $t \in \mathbb{N}_0$ $f: S \times \Theta \to S$ transition function

 \rightarrow dynamical system $s^{(t+1)} = f(s^{(t)}, \theta)$

(*)

recurrence relation

 $s^{(t)} = f^t(s^{(0)}, \theta) = \underbrace{f \circ \cdots \circ f(s^{(0)}, \theta)}_{t \text{ times}} = \underbrace{f_{\theta}(f_{\theta}(f_{\theta}(\cdots f_{\theta}(s^{(0)}))))}_{t \text{ times}}; \quad f_{\theta}(s) = f(s, \theta)$

D: s^* is called stationary point / fixed point / steady state of (*) if $s^* = f(s^*)$

D: stationary point s^* is locally asymptotical stable (l.a.s.) if

$$\exists \varepsilon > 0 : \forall s^{(0)} \in B_{\varepsilon}(s^*) : \lim_{t \to \infty} s^{(t)} = s^*$$

T: Let f be differentiable. Then s is l.a.s. if |f'(s)| < 1, and unstable if |f'(s)| > 1.

Remark: D: $s \in S$ is recurrent if $\forall \varepsilon > 0 : \exists t > 0 : f^t(s) \in B_{\varepsilon}(s)$ infinitly often (i.o.)

technische universität dortmund Lecture 13

- Recurrent Neural Networks
 - Excursion: Nonlinear Dynamics
 - Recurrent Models
 - Training

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Dynamical Systems with Discrete Time

Lecture 13

examples

• <u>linear case:</u> f(x) = a x + b $a, b \in \mathbb{R}$

fixed points: $x=f(x)=a\,x+b \quad \Rightarrow \quad x=rac{b}{1-a} \qquad \text{ if } a
eq 1$

stability: $f'(x) = a \qquad \Rightarrow |f'(x^*)| = |a| < 1 \text{ I.a.s., } |a| > 1 \text{ unstable}$

• nonlinear case: f(x) = r x (1-x) $r \in (0,4]$ $x \in (0,1)$ logistic map

fixed points: $x = f(x) = r \, x \, (1-x) \quad \Rightarrow \quad x = 0 \text{ or } x = 1 - \frac{1}{r} = \frac{r-1}{r}$

stability: f'(x) = r - 2r x

|f'(0)| = r < 1 \Rightarrow l.a.s. also for r = 1 since x < f(x) for $x < \frac{1}{2}$

 $|f'(\frac{r-1}{r})| = |2-r| < 1 \Leftrightarrow 1 < r < 3$ l.a.s.

 $r \in [3, 1 + \sqrt{6}]$ oscillation between 2 values

 $r \in [1+\sqrt{6},3.54\ldots)$ oscillation between 4 values : 8, 16, 32, ...

r > 3.56995... deterministic chaos

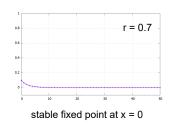
→ predicting a nonlinear dynamic system may be impossible!

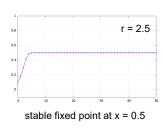
Dynamical Systems with Discrete Time

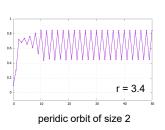
Lecture 13

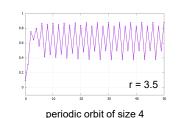
logistic map

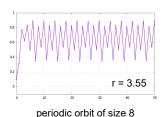
starting at x = 0.1

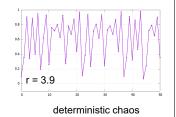












G. Rudolph: Computational Intelligence • Winter Term 2021/22

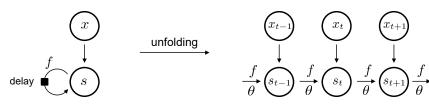
Lecture 13

unfolding

• finite input sequence

Recurrent Neural Networks (RNN)

- ⇒ can unfold RNN completely to (deep) feed forward network
- infinite input sequence
 - ⇒ can unfold RNN only finitely many steps into the past
 - \Rightarrow <u>assumption</u>: behavior mainly depends on few inputs in the past (i.e., **no** long-term dependencies)



remark: parameters θ in unfolded network are <u>shared</u> otherwise with θ_t <u>overfitting</u> becomes very likely!

technische universität dortmund

Dynamical Systems with Discrete Time

Lecture 13

extensions

dynamical system with inputs

$$s^{(t)} = f(s^{(t-1)}, x^{(t)}; \theta)$$
 input at time $t \in \mathbb{N}$

• dynamical system with inputs and outputs

describes a recurrent neural network (RNN)

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Historic Recurrent Neural Networks

Lecture 13

Jordan network (1983)

$$s_t = f(s_{t-1}, x_t; W, U, b)$$
$$= \sigma(Wx_t + U\hat{y}_{t-1} + b)$$

$$o_t = g(s_t; V, c)$$
$$= V s_t + c$$

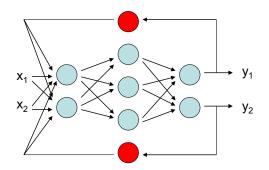
$$\hat{y}_t = a(o_t)$$

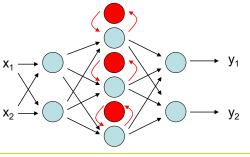
• Elman network (1990)

$$s_t = \sigma(Wx_t + Us_{t-1} + b)$$

$$o_t = Vs_t + c$$

$$\hat{y}_t = a(o_t)$$

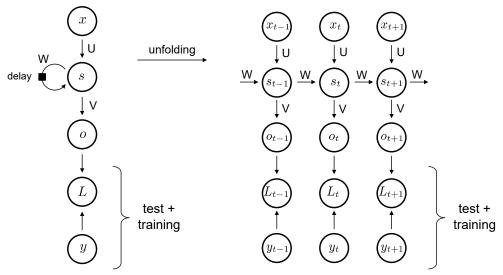




Recurrent Neural Networks

Lecture 13

test / training mode



loss per input $L(\hat{y}, y) = \|\hat{y} - y\|_2^2$ where $\hat{y} = \text{SOFTMAX}(o)$

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Recurrent Neural Networks

Lecture 13

LSTM network (1997f.)

LSTM = long short-term memory

historic/standard RNN

forget too quickly

so far: no long-term dependencies

now: "remember the important stuff and forget the rest" [Cha18, p.89]

concept: two versions of the past

- 1. selective long-term memory
- 2. short term memory

■ technische universität

• has the ability to learn long-term dependencies

Recurrent Neural Networks

Lecture 13

training?

backpropagation through time (BPTT)

- works on unfolded network for a finite input sequence $x^{(1)}, \dots, x^{(\tau)}$
- some adaption to BP necessary, since many parameters are shared

reduces #params and overfitting

- "straightforward" (but tedious + error-prone if done manually)
 - → use method from your software library!
- in principle: gradient descent on loss function

technische universität dortmund

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Recurrent Neural Networks

Lecture 13

LSTM Neuron

■ technische universität

LSTM = long short-term memory

