

Radial Basis Function Nets (RBF Nets) Lecture 14	Radial Basis Function No	ets (RBF Nets)	ecture 14
Tikhonov Regularization (1963) $\underline{idea:}$ choose $(P'P + h I_q)^{-1}$ instead of $(P'P)^{-1}$ $(h > 0, I_q \text{ is } q\text{-dim. unit})$ $\underline{excursion to linear algebra:}$ Def : matrix A positive semidefinite (p.s.d) iff $\forall x \in \mathbb{R}^n : x'Ax \ge 0$ $Def : matrix A positive definite (p.d.) iff \forall x \in \mathbb{R}^n \setminus \{0\} : x'Ax > 0Thm : matrix A : n \times n regular \Leftrightarrow rank(A) = n \Leftrightarrow A^{-1} exists \Leftarrow A is p.d.Lemma : a, b > 0, A, B : n \times n, A p.d. and B p.s.d. \Rightarrow a \cdot A + b \cdot B p.d.Proof : \forall x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = a \cdot x'Ax + b \cdot x'Bx > 0\sum_{0 \to 0} = 0x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = a \cdot x'Ax + b \cdot x'Bx > 0x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = a \cdot x'Ax + b \cdot x'Bx > 0x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = a \cdot x'Ax + b \cdot x'Bx > 0x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = a \cdot x'Ax + b \cdot x'Bx > 0x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = a \cdot x'Ax + b \cdot x'Bx > 0x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = a \cdot x'Ax + b \cdot x'Bx > 0x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = a \cdot x'Ax + b \cdot x'Bx > 0x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = a \cdot x'Ax + b \cdot x'Bx > 0x \in \mathbb{R}^n \setminus \{0\} : x'Ax + b \cdot B = 0x \in \mathbb{R}^n \setminus \{0\} : x'Ax + b \cdot B = 0x \in \mathbb{R}^n \setminus \{0\} : x'Ax + b \cdot B = 0x \in \mathbb{R}^n \setminus \{0\} : x'Ax + b \cdot B = 0x \in \mathbb{R}^n \setminus \{0\} : x'Ax + b \cdot B = 0x \in \mathbb{R}^n \setminus \{0\} : x'Ax + b \cdot B = 0x \in \mathbb{R}^n \setminus \{0\} : x'Ax + b \cdot B = 0x \in \mathbb{R}^n \setminus \{0\} : x'Ax + b \cdot B = 0x \in \mathbb{R}^n \setminus \{0\} : x'Ax + b \cdot B = 0x \in \mathbb{R}^n \setminus \{0\} : x'Ax + b \cdot B = 0x \in \mathbb{R}^n \setminus \{0\} : x'Ax + b \cdot B = 0x \in \mathbb{R}^n \setminus \{0\} : x'$	Tikhonov Regularization (1 $\Rightarrow (P'P + h I_q)$ is p.d. \Rightarrow $guestion:$ how to justify this $\ Pw - y\ ^2 + h \cdot \ w\ ^2 \rightarrow$ interpretation: minimize TSS $\frac{d}{dw}[(Pw - y)'(Pw - y) + y]$ $\frac{d}{dw}[(w'P'Pw - w'P'y - y')]$ $2P'Pw - 2P'y + 2hw = 2$ $\Rightarrow w^* = (P'P + h I_q)^{-1}P$	963) $(P'P + h I_q)^{-1}$ exists particular choice? min _w ! E and prefer solutions with small $h \cdot w'w] =$ $Pw + y'y + h \cdot w'w] =$ $2(P'P + h I_q)w - 2P'y \stackrel{!}{=} 0$ 'y	ll values! avoid overfitting
Proof : $\forall x \in \mathbb{R}^n : x'(P'P)x = (x'P') \cdot (Px) = (Px)'(Px) = Px _2^2 \ge 0$	$\frac{d}{dw} \left[2\left(P'P + h I_q\right) w - 2P'\right]$	$y] = 2 \left(P'P + h I_q \right)$ is p.d.	\Rightarrow minimum
G. Rudolph: Computational Intelligence • Winter Te dortmund	technische universität dortmund	G. Rudolph: Computa	tional Intelligence • Winter Term 2021/22 8

• additional training patterns → only local adjustment of weights

regions not supported by RBF net can be identified by zero outputs

number of neurons increases exponentially with input dimension

• unable to extrapolate (since there are no centers and RBFs are local)

optimal weights determinable in polynomial time

advantages:

disadvantages:

J technische universität dortmund

Radial Basis Function Nets (RBF Nets)

Lecture 14

Example: XOR via RBF

training data: (0,0), (1,1) with value -1 (0,1), (1,0) with value +1

$$\varphi(r) = \exp\left(-\frac{1}{\sigma^2} r^2\right)$$

choose Gaussian kernel; set σ = 1; set centers c to training points

$$\hat{f}(x) = w_1 \varphi(\|x - c_1\|) + w_2 \varphi(\|x - c_2\|) + w_3 \varphi(\|x - c_3\|) + w_4 \varphi(\|x - c_4\|)$$

$$\hat{f}(0,0) = w_1 + e^{-1} \cdot w_2 + e^{-1} \cdot w_3 + e^{-2} \cdot w_4 \stackrel{!}{=} -1$$

$$\hat{f}(0,1) = e^{-1} \cdot w_1 + w_2 + e^{-2} \cdot w_3 + e^{-1} \cdot w_4 \stackrel{!}{=} 1$$

$$\hat{f}(1,0) = e^{-1} \cdot w_1 + e^{-2} \cdot w_2 + w_3 + e^{-1} \cdot w_4 \stackrel{!}{=} 1$$

$$\hat{f}(1,1) = e^{-2} \cdot w_1 + e^{-1} \cdot w_2 + e^{-1} \cdot w_3 + w_4 \stackrel{!}{=} -1$$

$$P = \begin{pmatrix} 1 & e^{-1} & e & e^{-2} \\ e^{-1} & 1 & e^{-2} & e^{-1} \\ e^{-1} & e^{-2} & 1 & e^{-1} \\ e^{-2} & e^{-1} & e^{-1} & 1 \end{pmatrix} y = \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix} w^* = P^{-1} y = \frac{e^2}{(e-1)^2} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$

$$\text{Echnische universität}$$

$$\text{G. Rudolph: Computational Intelligence \cdot Winter Term 2021/2}$$

2

(if output close to zero, verify that output of each basis function is close to zero)

G. Rudolph: Computational Intelligence • Winter Term 2021/22 13

to technische universität dortmund

 x_i if $i \neq k$

G. Rudolph: Computational Intelligence • Winter Term 2021/22

Definition

Energy function of HN at iteration t is $E(x^{(t)}) = -\frac{1}{2}x^{(t)}Wx^{(t)} + \theta^{t}x^{(0)}$

Hopfield Network	Lecture 14	Hopfield Network	Lecture 14
$= -\frac{1}{2} \sum_{\substack{i=1\\i\neq k}}^{n} \sum_{j=1}^{n} w_{ij} x_i \underbrace{(x_j - \tilde{x}_j)}_{= 0 \text{ if } j \neq k} - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\i\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1\\j\neq k}}^{n} w_{kj} x_j (x_k - $	$egin{aligned} & x_k - ilde{x}_k \end{pmatrix} + heta_k \left(x_k - ilde{x}_k ight) \ & k_k \end{pmatrix} + heta_k \left(x_k - ilde{x}_k ight) \ & k_k = 0 \end{pmatrix}$	 ⇒ every update (change of state) of state) ⇒ since number of different bipola update stops after finite #update remark: dynamics of HN get stable 	decreases energy function r vectors is finite es e in local minimum of energy function! q.e.d.
$= -\sum_{i=1}^{n} w_{ik} x_i (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)$		\Rightarrow Hopfield network can be used to	o optimize combinatorial optimization problems!
$= -(x_k - \tilde{x}_k) \begin{bmatrix} \sum_{i=1}^n w_{ik} x_i & -\theta_k \end{bmatrix} > 0 \text{since}$ $\underbrace{x_k}_{\substack{\text{excitation } \mathbf{e}_k}} \\ 0 \text{ if } \mathbf{x}_k < 0 \text{ and vice versa} \end{cases}$	e: $rac{x_k - ilde{x}_k \ e_k - heta_k \ \Delta E}{> 0 \ < 0 \ > 0}$ $< 0 \ > 0 \ > 0$		
technische universität G. Rudolph: Comp dortmund	putational Intelligence • Winter Term 2021/2 2	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2021/22 22

Hopfield Network	Lecture 14	Hopfield Network	Lecture 14
Application to Combinatorial Optimization		Example I: Linear Functions	
Idea:		$f(x) = \sum_{i=1}^{n} c_i x_i \to \min! \qquad ($	$x_i \in \{-1, +1\}$)
 transform combinatorial optimization problem as objust 	jective function with $x \in \{-1,+1\}^n$	Evidently: $E(x) = f(x)$ with W :	= 0 and $ heta=c$
• rearrange objective function to look like a Hopfield e	energy function	Ų	
- extract weights W and thresholds θ from this energy	/ function	choose $x^{(0)} \in \{-1, +1\}^n$	
• initialize a Hopfield net with these parameters W an	d θ	repeat $i = 0$	
 run the Hopfield net until reaching stable state (= log 	cal minimizer of energy function)	choose index k at random	
stable state is local minimizer of combinatorial optin	nization problem	$x_k^{(t+1)} = \operatorname{sgn}(x^{(t)} \cdot W_{\cdot,k} - \theta_k) = \operatorname{sgn}(x^{(t)} \cdot W_{\cdot,k} - \theta_k) = \operatorname{sgn}(x^{(t+1)} - \theta_k) = \operatorname{sgn}(x^{(t$	$ (x^{(t)} \cdot 0 - c_k) = -\operatorname{sgn}(c_k) = \begin{cases} -1 & \text{if } c_k > 0 \\ +1 & \text{if } c_k < 0 \end{cases} $
		increment t	
		until reaching fixed point	
		\Rightarrow fixed point reached after Θ (n loc	n) iterations on average
		[proof: \rightarrow black board]	

G. Rudolph: Computational Intelligence • Winter Term 2021/22 23

technische universität dortmund technische universität dortmund

Hopfield Network

Lecture 14

Example II: MAXCUT

<u>given:</u> graph with n nodes and symmetric weights ω_{ij} = ω_{ji} , ω_{ii} = 0, on edges

<u>task</u>: find a partition $V = (V_0, V_1)$ of the nodes such that the weighted sum of edges with one endpoint in V_0 and one endpoint in V_1 becomes maximal

<u>encoding</u>: \forall i=1,...,n: $y_i = 0$, node i in set V_0 ; $y_i = 1$, node i in set V_1

<u>objective function</u>: $f(y) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[y_i \left(1 - y_j \right) + y_j \left(1 - y_i \right) \right] \rightarrow \max!$

preparations for applying Hopfield network

step 1: conversion to minimization problem

step 2: transformation of variables

step 3: transformation to "Hopfield normal form"

step 4: extract coefficients as weights and thresholds of Hopfield net

U technische universität dortmund G. Rudolph: Computational Intelligence - Winter Term 2021/22

Hopfield Network

Lecture 14

Example II: MAXCUT (continued)

step 1: conversion to minimization problem

$$\Rightarrow$$
 multiply function with -1 \Rightarrow E(y) = -f(y) \rightarrow min!

step 2: transformation of variables

$$\Rightarrow y_{i} = (x_{i}+1)/2$$

$$\Rightarrow f(x) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[\frac{x_{i}+1}{2} \left(1 - \frac{x_{j}+1}{2} \right) + \frac{x_{j}+1}{2} \left(1 - \frac{x_{i}+1}{2} \right) \right]$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[1 - x_{i} x_{j} \right]$$

$$= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} - \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_{i} x_{j}$$
constant value (does not affect location of optimal solution)

technische universität dortmund

25

G. Rudolph: Computational Intelligence • Winter Term 2021/22 26

Hopfield Network

Lecture 14

Example II: MAXCUT (continued)

step 3: transformation to "Hopfield normal form"

$$E(x) = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j = -\frac{1}{2} \sum_{\substack{i=1 \ j=1}}^{n} \sum_{\substack{j=1 \ i\neq j}}^{n} \left(-\frac{1}{2} \omega_{ij}\right) x_i x_j$$
$$= -\frac{1}{2} x' W x + \theta' x$$
$$\downarrow$$
$$0'$$

step 4: extract coefficients as weights and thresholds of Hopfield net

$$w_{ij} = -\frac{\omega_{ij}}{2}$$
 for $i \neq j$, $w_{ii} = 0$, $\theta_i = 0$

remark: ω_{ij} : weights in graph — w_{ij} : weights in Hopfield net