technische universität dortmund	Plan for Today Lecture 01		
Computational Intelligence Winter Term 2022/23	 Fuzzy Sets Basic Definitions and Results for Standard Operations Algebraic Difference between Fuzzy and Crisp Sets 		
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund			
	G. Rudolph: Computational Intelligence • Winter Term 2022/2 dortmund		
Fuzzy Systems: Introduction Lecture 01	Fuzzy Systems: Introduction Lecture 01		
Observation: Communication between people is not precise but somehow <u>fuzzy</u> and <u>vague</u> .	Consider the statement: "The water is hot." Which temperature defines "hot"?		
"If the water is too hot then add a little bit of cold water."	A single temperature T = 95° C? No! Rather, an interval of temperatures: T \in [70, 120] !		
Despite these shortcomings in human language we are ableto process fuzzy / uncertain information and	But who defines the limits of the intervals? Some people regard temperatures > 60° C as hot, others already T > 50° C!		
 to accomplish complex tasks! 	Idea: All people might agree that a temperature in the <u>set</u> [70, 120] defines a hot temperature!		
Goal:	If T = 65°C not all people regard this as hot. It does not belong to [70,120].		
Development of formal framework to process fuzzy statements in computer.	But it is hot to some <u>degree</u> . Or: T = 65°C belongs to set of hot temperatures to some <u>degree</u> !		
	\Rightarrow Can be the concept for capturing fuzziness! \Rightarrow Formalize this concept		
U technische universität G. Rudolph: Computational Intelligence • Winter Term 2022/2 dortmund	23 3 Uto technische universität G. Rudolph: Computational Intelligence • Winter Term 2022 dortmund		

Fuzzy Sets: The Beginning ...

Lecture 01

Fuzzy Sets: Membership Functions

Lecture 01

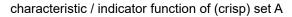
A map F: X \rightarrow [0,1] $\subset \mathbb{R}$ that assigns its *degree of membership* F(x) to each $x \in X$ is termed a **fuzzy set**.

Remark:

A fuzzy set F is actually a map F(x). Shorthand notation is simply F.

Same point of view possible for traditional ("crisp") sets:

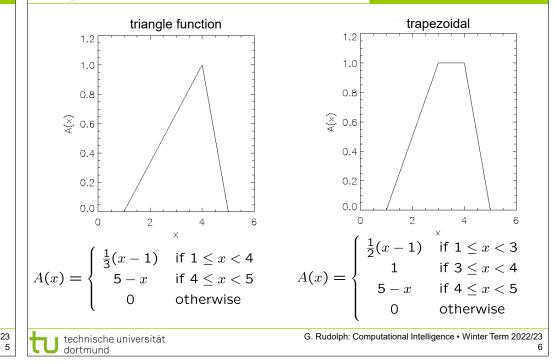
$$A(x) := \mathbf{1}_{[x \in A]} := \mathbf{1}_A(x) := \begin{cases} \mathbf{1} & \text{, if } x \in A \\ \mathbf{0} & \text{, if } x \notin A \end{cases}$$



 \Rightarrow membership function interpreted as generalization of characteristic function

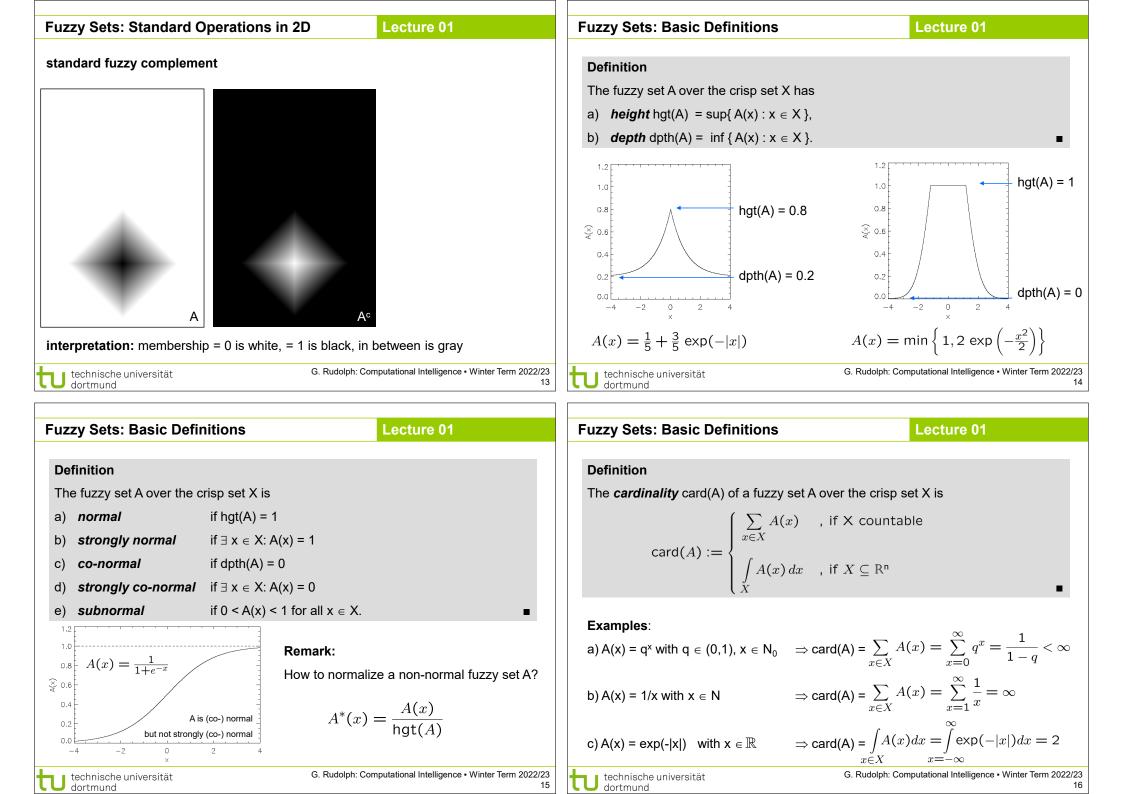
J technische universität dortmund

G. Rudolph: Computational Intelligence - Winter Term 2022/23



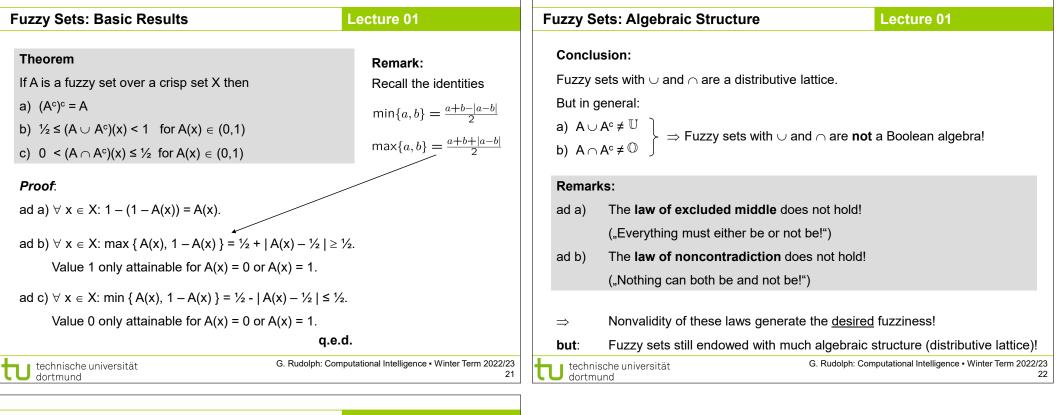
Fuzzy Sets: Membership Functions	Lecture 01		
paraboloidal function	gaussoid function		
1.2	1.2		
1.0	1.0		
0.8	0.8		
0.4	0.4		
0.2	0.2		
0.0[0.0		
0 2 4 6 x	0 2 4 6 ×		
$A(x) = \begin{cases} -\frac{(x-1)(x-5)}{4} & \text{if } 1 \le x < 5\\ 0 & \text{otherwise} \end{cases}$	$A(x) = \exp\left(-\frac{(x-3)^2}{2}\right)$		
technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2022/23 7		

Definition		
A fuzzy set F over the crisp set X	is termed	
a) empty if F(x) = 0 for al	$I : x \in X,$	
b) <i>universal</i> if F(x) = 1 for al	$I X \in X.$	
Empty fuzzy set is denoted by \mathbb{O} .	. Universal set is denoted by $\mathbb U.$	
Definition		
Let A and B be fuzzy sets over the	e crisp set X.	
a) A and B are termed <i>equal</i> , denoted A = B, if $A(x) = B(x)$ for all $x \in X$.		
b) A is a <i>subset</i> of B, denoted A	\subseteq B, if A(x) \leq B(x) for all x \in X.	
c) A is a strict subset of B, deno	beted $A \subset B$, if $A \subseteq B$ and $\exists x \in X$: $A(x) \leq B(x)$.	
Remark: A strict subset is also ca	alled a <i>proper</i> subset.	



uzzy Sets: Basic R	esults	Lecture 01	Fuzzy Sets: Basic Re	esults	Lecture 01
Theorem			Theorem		
For fuzzy sets A, B an	d C over a crisp set X the <u>standar</u>	rd union operation is	For fuzzy sets A, B and	C over a crisp set X the standar	d intersection operation is
a) commutative	$: A \cup B = B \cup A$		a) commutative	: $A \cap B = B \cap A$	
b) associative	: A \cup (B \cup C) = (A \cup B) \cup C		b) associative	: A \cap (B \cap C) = (A \cap B) \cap C	
c) <i>idempotent</i>	$: A \cup A = A$		c) <i>idempotent</i>	: $A \cap A = A$	
d) <i>monotone</i>	$: A \subseteq B \Rightarrow (A \cup C) \subseteq (B \cup C)$;).	d) <i>monotone</i>	$: A \subseteq B \ \Rightarrow \ (A \cap C) \subseteq (B \cap C)$;).
Proof: (via reduction to definitions)		Proof : (analogous to p	proof for standard union operation	n) 🗖	
ad a) A \cup B = max { A	$(x), B(x) \} = \max \{ B(x), A(x) \} = B$	\cup A.			
ad b) A \cup (B \cup C) = m = m	ax { A(x), max{ B(x), C(x) } } = m ax { max { A(x), B(x) } , C(x) } = (A	ax { A(x), B(x) , C(x) } A ∪ B) ∪ C.			
ad c) A \cup A = max { A($\{x\}, A(x) \} = A(x) = A.$				
ad d) A \cup C = max { A	$(x), C(x) \} \le \max \{ B(x), C(x) \} = B$	$u \cup C$ since $A(x) \le B(x)$. q.e.d.			
U technische universität dortmund	G. Rudolph: Col	mputational Intelligence • Winter Term 2022/23 17	technische universität	G. Rudolph: Co	nputational Intelligence - Winter Term 2022/

Fuzzy Sets: Basic Results	Lecture 01	Fuzzy Sets: Basic Results	Lecture 01
Theorem		Theorem	Proof:
For fuzzy sets A, B and C over a crisp set X there are the	e <u>distributive laws</u>	If A is a fuzzy set over a crisp set X the	en (via reduction to definitions)
a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		a) $A \cup \mathbb{O} = A$	ad a) max { $A(x), 0$ } = $A(x)$
b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.		b) $A \cup \mathbb{U} = \mathbb{U}$	ad b) max { A(x), 1 } = $\mathbb{U}(x) = 1$
Draafi		c) $A \cap \mathbb{O} = \mathbb{O}$	ad c) min { A(x), 0 } = $\mathbb{O}(x) = 0$
Proof: ad a) max { A(x), min { B(x), C(x) } } = $\begin{cases} max { A(x), B(x) } \\ max { A(x), C(x) } \end{cases}$	} if B(x) ≤ C(x) } otherwise	d) $A \cap \mathbb{U} = A$.	ad d) min { A(x), 1 } = A(x). ■
If $B(x) \le C(x)$ then max { $A(x), B(x)$ } \le max { $A(x), C(x)$;(x) }.	Breakpoint:	
Otherwise $\max \{ A(x), C(x) \} \le \max \{ A(x), E(x) \}$	B(x) }.	So far we know that fuzzy sets with op	perations \cap and \cup are a <u>distributive lattice</u> .
		If we can show the validity of	
\Rightarrow result is always the smaller max-expression		• (A ^c) ^c = A	
\Rightarrow result is min { max { A(x), B(x) }, max { A(x), C(x) }	() } = (A \cup B) \cap (A \cup C).	• A \cup A ^c = U	
ad b) analogous.	-	• A \cap A ^c = \mathbb{O} \Rightarrow Fuzz	y Sets would be Boolean Algebra! Is it true
U technische universität G. Rudolph: Com dortmund	outational Intelligence - Winter Term 2022/23 19	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2022



F	uzzy Sets: Del	Lecture 01				
	Theorem					
	If A and B are fuzzy sets over a crisp set X with standard union, intersection,					
	and complement operations then DeMorgan 's laws are valid:					
	a) $(A \cap B)^c = A^c \cup B^c$					
	b) $(A \cup B)^c = A^c \cap B^c$					
	Proof: (via reduction to elementary identities)					
	ad a) (A \cap B) ^c (x) = 1 – min { A(x), B(x) } = max { 1 – A(x), 1 – B(x) } = A ^c (x) \cup B ^c (x)					
ad b) (A \cup B) ^c (x) = 1 – max { A(x), B(x) } = min { 1 – A(x), 1 – B(x) } = A ^c (x) \cap B ^c (x)						
			q.e.d.			
	Question	: Why restricting result above to " <u>sta</u>	andard" operations?			
	Conjecture	: Most likely there also exist " <i>nonsta</i>	andard" operations!			
	technische univer	eität G. Rudolph: Co	omputational Intelligence • Winter Term 2022			