technische universität	Plan for Today Lecture 04
Computational Intelligence Winter Term 2022/23	 Approximate Reasoning Fuzzy Control
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund	G. Rudolph: Computational Intelligence • Winter Term 2022/23 dortmund 2
Approximative Reasoning Lecture 04	Approximative Reasoning Lecture 04
Approximative ReasoningLecture 04So far: • p: IF X is A THEN Y is B $\rightarrow R(x, y) = Imp(A(x), B(y))$ rule as relation; fuzzy implication• rule: fact: conclusion:IF X is A THEN Y is B fact: Y is B' $\rightarrow B'(y) = sup_{x \in X} t(A'(x), R(x, y))$ composition rule of inference	Approximative ReasoningLecture 04special case:A'(x) = $\begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$ crisp input!B'(y) = $\sup_{x \in X} t(A'(x), \operatorname{Imp}(A(x), B(y)))$ = $\begin{cases} \sup_{x \neq x_0} t(0, \operatorname{Imp}(A(x), B(y))) & \text{for } x \neq x_0 \\ t(1, \operatorname{Imp}(A(x_0), B(y))) & \text{for } x = x_0 \end{cases}$
Thus: given : fuzzy rule • B'(y) = sup _{x∈X} t(A'(x), Imp(A(x), B(y))) input : fuzzy set A' output : fuzzy set B' • technische universität G. Rudolph: Computational Intelligence • Winter Term 2022/23	$=\begin{cases} 0 & \text{for } x \neq x_0 & \text{since } t(0, a) = 0\\ \text{Imp}(A(x_0), B(y)) & \text{for } x = x_0 & \text{since } t(a, 1) = a \text{ [A1]} \end{cases}$ $\stackrel{\textbf{Lechnische universität}}{\overset{\textbf{G. Rudolph: Computational Intelligence • Winter Term 2022/23}}$

Approximative Reasoning	Lecture 04	Approximative Reasoning	Lecture 04
Approximative ReasoningLemma:a) $t(a, 1) = a$ b) $t(a, b) \le \min \{a, b\}$ c) $t(0, a) = 0$ Proof:ad a) Identical to axiom 1 of t-norms.ad b) From monotonicity (axiom 2) follows for $b \le 1$ Commutativity (axiom 3) and monotonicity leat $t(a, b) = t(b, a) \le t(b, 1) = b$. Thus, $t(a, b)$ is leequal to a as well as b, which in turn impliesad c) From b) follows $0 \le t(0, a) \le \min \{0, a\} = 0$ at	by a) $f(a, b) \le t(a, 1) = a.$ ad in case of $a \le 1$ to ss than or $t(a, b) \le min\{a, b\}.$	Approximative ReasoningMultiple rules:IF X is A_1 , THEN Y is B_1 IF X is A_2 , THEN Y is B_2 IF X is A_3 , THEN Y is B_3 IF X is A_n , THEN Y is B_n X is A' Y is B'Multiple rules for fuzzy input: $A'(x)$ $B_1'(y) = \sup_{x \in X} t(A'(x), R_1(x, y))$ $B_n'(y) = \sup_{x \in X} t(A'(x), R_n(x, y))$ aggregate! \Rightarrow B'(y) = aggr{ $B_1'(y)$,	$ \rightarrow R_{1}(x, y) = Imp_{1}(A_{1}(x), B_{1}(y)) \rightarrow R_{2}(x, y) = Imp_{2}(A_{2}(x), B_{2}(y)) \rightarrow R_{3}(x, y) = Imp_{3}(A_{3}(x), B_{3}(y)) \cdots \rightarrow R_{n}(x, y) = Imp_{n}(A_{n}(x), B_{n}(y)) $
C. Rudolp dortmund	h: Computational Intelligence • Winter Term 2022/23 5 Lecture 04	Approximative Reasoning	G. Rudolph: Computational Intelligence • Winter Term 2022/23 6
Axioms of Aggregation [cf. Fung/Fu 1975; quoted from W. Cholewa: Fuzzy Sets & Systems 17:249-25 Let A, A ₁ , A ₂ , be fuzzy sets over X. The aggregate (A1) \exists function \circ : [0,1] x [0,1] \rightarrow [0,1] with (A ₁ \oplus A ₂) (A2) \forall A: A \oplus A = A (A3) \forall i, j: A _i \oplus A _j = A _j \oplus A _i (A4) For m \geq 3: A ₁ \oplus \oplus A _m = (A ₁ \oplus \oplus A _{m-1}) \oplus A	(x) = A ₁ (x) \circ A ₂ (x) $\forall x \in X$	 FITA: "First inference, then aggregate!" 1. Each rule of the form IF X is A_k THEN Y is B_k must be transformed by an appropriate fuzzy implication Imp_k(·,·) to a relation R_k : R_k(x, y) = Imp_k(A_k(x), B_k(y)). 2. Determine B_k'(y) = R_k(x, y) ∘ A'(x) for all k = 1,, n (local inference). 3. Aggregate to B'(y) = β(B₁'(y),, B_n'(y)). 	
(A5) $\forall i, j, k : A_i \oplus (A_j \oplus A_k) = (A_i \oplus A_j) \oplus A_k$ (A6) Let $A_1 = A \oplus A_3$ and $A_2 = A \oplus A_4$. If $A_3(x) > A_4(x)$ Theorem If Axioms (A1) – (A6) hold, then only three types of a 1. $a \circ b = min(a, b)$ 2. $a \circ b = max(a, b)$,,,	 FATI: "First aggregate, then inference!" 1. Each rule of the form IF X ist A_k THEN Y ist B_k must be transformed by an appropriate fuzzy implication Imp_k(·, ·) to a relation R_k : R_k(x, y) = Imp_k(A_k(x), B_k(y)). 2. Aggregate R₁,, R_n to a superrelation with aggregating function α(·): R(x, y) = α(R₁(x, y),, R_n(x, y)). 	

technische universität dortmund

- 1. a ∘ b = min(a, b) 2. $a \circ b = max(a, b)$
- 3. $a \circ b = min(a, b)$ for $a, b \ge \theta$; = max(a, b) for $a, b \le \theta$; $= \theta$ otherwise (0 < θ < 1)

3. Determine $B'(y) = R(x, y) \circ A'(x)$ w.r.t. superrelation (inference).

G. Rudolph: Computational Intelligence - Winter Term 2022/23

8

Approximative Reasoning	Lecture 04	Approximative Reasoning	Lecture 04
1. Which principle is better? FITA or FATI? 2. Equivalence of FITA and FATI ?		special case: $A'(x) = \begin{cases} 1 & \text{for } x = x_0 \\ 0 & \text{otherwise} \end{cases}$	crisp input! ←
FITA: $B'(y) = \beta(B_1'(y),, B_n'(y))$		On the equivalence of FITA and FAT	1:
$= \beta(R_1(x, y) \circ A'(x),, R_n(x, y) \circ A$ FATI: B'(y) = R(x, y) \circ A'(x)	'(x))	FITA: $B'(y) = \beta(B_1'(y),, B_n'(y))$ = $\beta(Imp_1(A_1(x_0), B_1))$))) (y)), …, Imp _n (A _n (x ₀), B _n (y)))
$= \alpha(R_1(x, y),, R_n(x, y)) \circ A'(x)$		FATI: $B'(y) = R(x, y) \circ A'(x)$ = $\sup_{x \in X} t(A'(x), R(x))$ = $R(x_0, y)$	
ightarrow general case: no further analysis without simplifyin	g assumptions		₁ (y)), …, Imp _n (A _n (x ₀), B _n (y))) same t-norm, α(·) = β(·), same Imp _i (), and ·
U technische universität G. Rudolph: Co dortmund	omputational Intelligence • Winter Term 2022/23 9	technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 2022/
Approximative Reasoning	Lecture 04	Approximative Reasoning	Lecture 04
• AND-connected premises IF $X_1 = A_{11}$ AND $X_2 = A_{12}$ AND AND $X_m = A_{1m}$ THE IF $X_n = A_{n1}$ AND $X_2 = A_{n2}$ AND AND $X_m = A_{nm}$ THE		important: • if rules of the form IF X is A THEN Y $\Rightarrow R(x, y) = Imp(A(x), B(y))$ makes • we obtain: B'(y) = sup _{x \in X} t(A'(x), R(x))	sense
reduce to single premise for each rule k:		interpretation of output set B'(y):	

 $A_k(x_1,...,x_m) = \min \{A_{k1}(x_1), A_{k2}(x_2), ..., A_{km}(x_m)\}$ or in general: t-norm

OR-connected premises

IF
$$X_1 = A_{11}$$
 OR $X_2 = A_{12}$ OR ... OR $X_m = A_{1m}$ THEN $Y = B_1$
...
IF $X_n = A_{n1}$ OR $X_2 = A_{n2}$ OR ... OR $X_m = A_{nm}$ THEN $Y = B_n$

reduce to single premise for each rule k:

 $A_k(x_1,...,x_m) = \max \{A_{k1}(x_1), A_{k2}(x_2), ..., A_{km}(x_m)\}$

or in general: s-norm

11

technische universität Π dortmund

• B'_k(y) is the set of values that are possible under the particular rule k • each rule leads to a different restriction of the values that are possible

 \Rightarrow resulting fuzzy sets B[']_k(y) obtained from single rules must be mutually <u>intersected</u>!

• must determine set of values that are possible for **all** rules

 \Rightarrow aggregation via B'(y) = min { B₁'(y), ..., B_n'(y) }

B₂ в

B₁

Approximative Reasoning

Lecture 04

important:

• if rules of the form **IF** *X* is **A THEN** *Y* is **B** are <u>not</u> interpreted as <u>logical</u> implications, then the function Fct(•) in

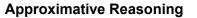
R(x, y) = Fct(A(x), B(y))

can be chosen as required for desired interpretation.

- frequent choice (especially in fuzzy control):
 - $R(x, y) = min \{ A(x), B(y) \}$

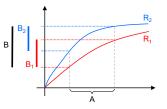
Mamdani – "implication"

 $- \mathsf{R}(\mathsf{x}, \mathsf{y}) = \mathsf{A}(\mathsf{x}) \cdot \mathsf{B}(\mathsf{y})$

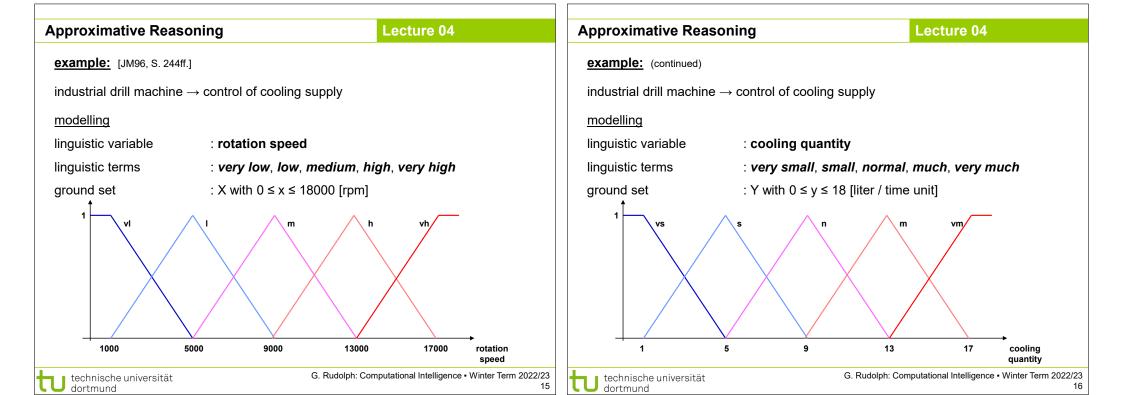

Larsen – "implication"

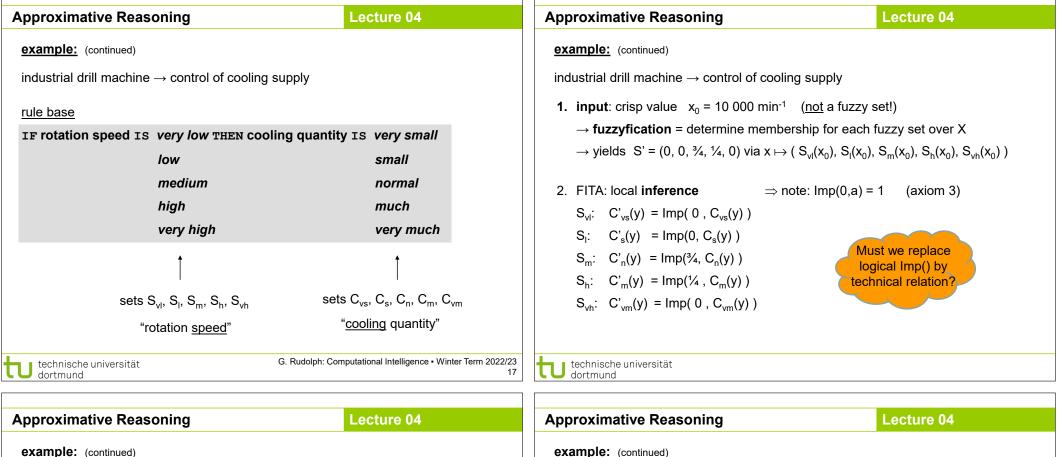
- \Rightarrow of course, they are no implications but specific t-norms!
- \Rightarrow thus, if <u>relation R(x, y) is given</u>, then the *composition rule of inference*

 $B'(y) = A'(x) \circ R(x, y) = \sup_{x \in X} \min \{A'(x), R(x, y)\}$


still can lead to a conclusion via fuzzy logic.

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2022/23 13




interpretation of output set B'(y):

- $B'_k(y)$ is the set of values that are possible under the particular rule k
- technical system must work for all values that are possible
- each rule may extend the set of the values that are possible
- \Rightarrow resulting fuzzy sets B[']_k(y) obtained from single rules must be mutually <u>united</u>!
- \Rightarrow aggregation via B'(y) = **max** { B₁'(y), ..., B_n'(y) }

technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2022/23 14

industrial drill machine \rightarrow control of cooling supply

in case of control task typically **no logic-based interpretation**:

- → max-aggregation and
- \rightarrow relation R(x,y) not interpreted as implication.

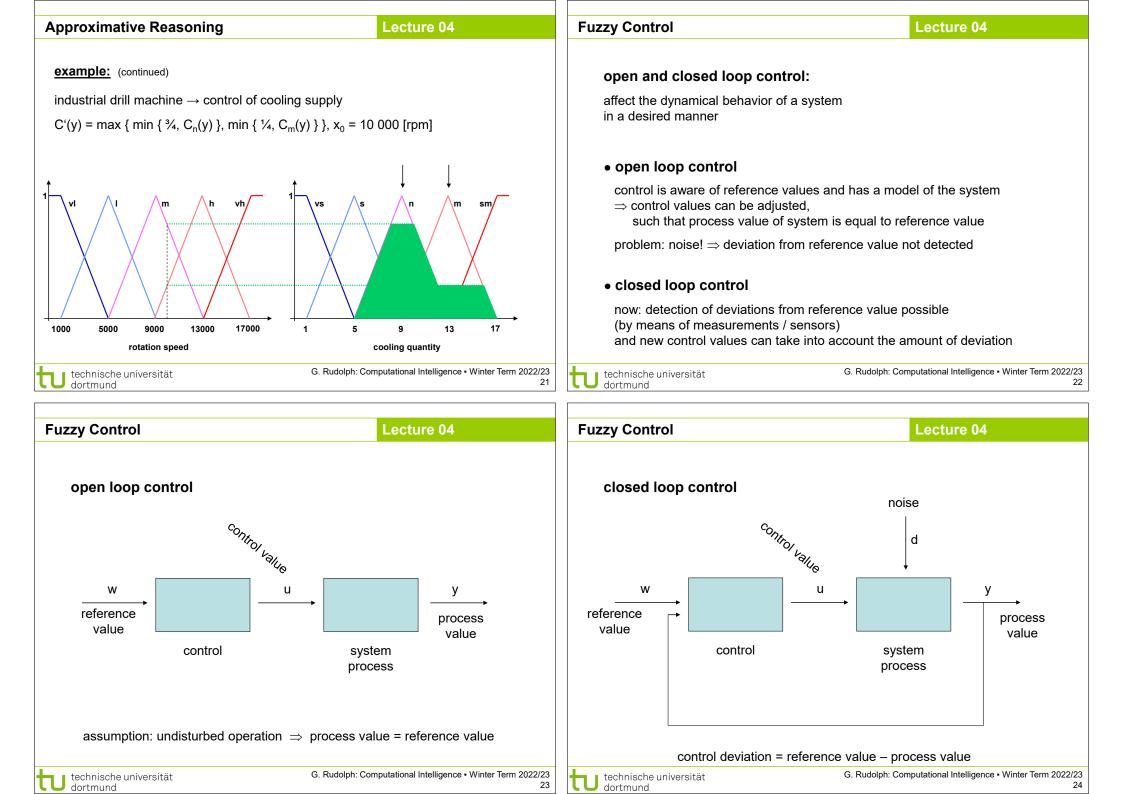
often: R(x,y) = min(A(x), B(y))"Mamdani controller"

2. FITA: local inference

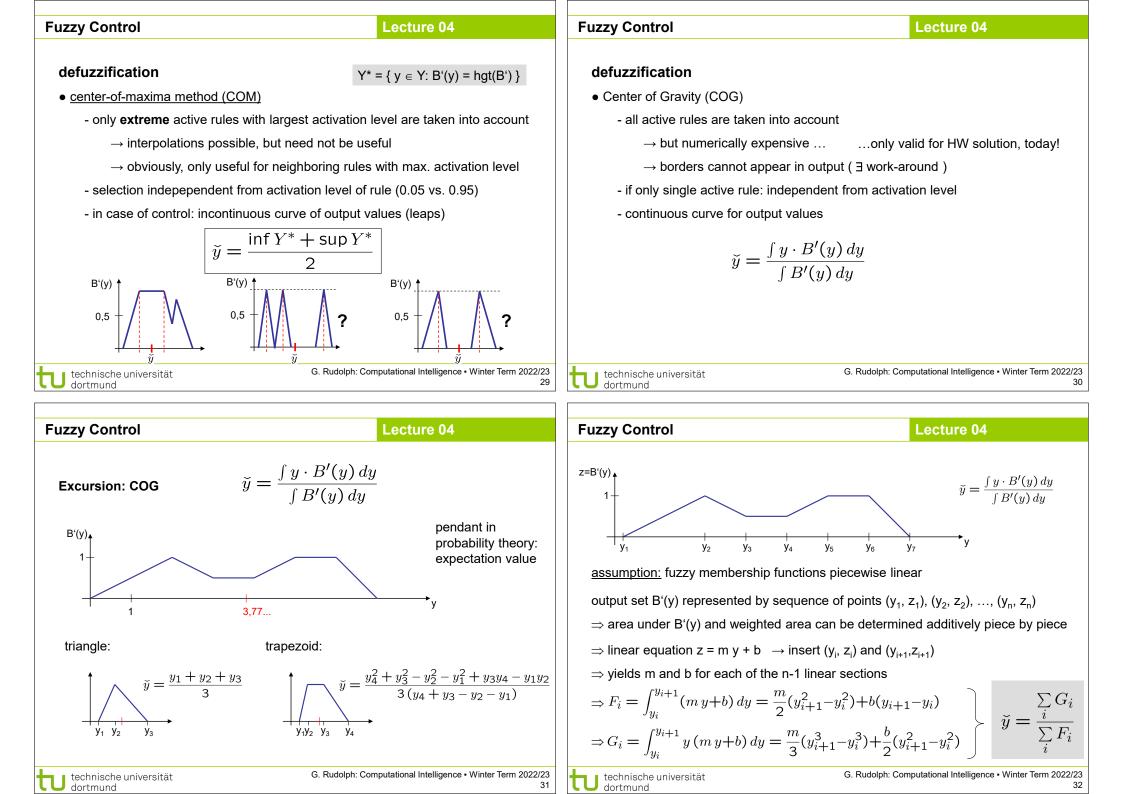
technische universität

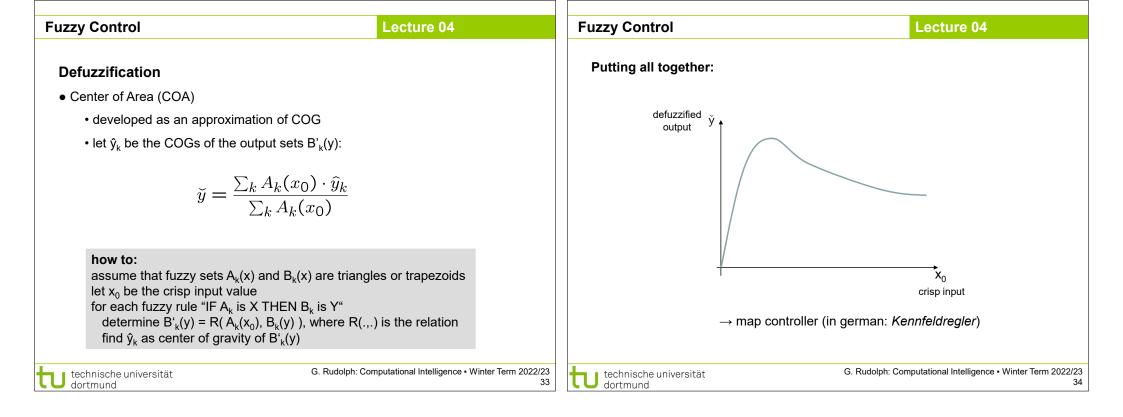
dortmund

 $S_{vl}: C'_{vs}(y) = min(0, C_{vs}(y)) = 0$ $S_{i:}$ $C'_{s}(y) = min(0, C_{s}(y)) = 0$ $S_m: C'_n(y) = \min(\sqrt[3]{4}, C_n(y)) \ge 0 \quad \ \ \, \searrow \text{ since } \min(0,a) = 0 \text{ and } \max\text{-}aggr.$ we only need to consider C_n and C_m $S_{h}: C'_{m}(y) = min(\frac{1}{4}, C_{m}(y)) \ge 0$ S_{vh} : $C'_{vm}(y) = min(0, C_{vm}(y)) = 0$


G. Rudolph: Computational Intelligence • Winter Term 2022/23

example: (continued) industrial drill machine \rightarrow control of cooling supply 3. aggregation: $C'(y) = aggr \{ C'_n(y), C'_m(y) \} = max \{ min(\frac{3}{4}, C_n(y)), min(\frac{1}{4}, C_m(y)) \}$ Remark: This approach can be applied with every t-norm and max-aggregation \Rightarrow C'(y) = max { t(³/₄, C_n(y)), t(¹/₄, C_m(y)) }


 \rightarrow graphical illustration



19

Europe Operatural				
Fuzzy Control	Lecture 04	Fuzzy Control	Lecture 04	
required: model of system / process \rightarrow as differential equations or diffe \rightarrow well developed theory available		fuzzy description of control toIF X is A_1 , THEN Y is B_1 IF X is A_2 , THEN Y is B_2 IF X is A_3 , THEN Y is B_3 IF X is A_n , THEN Y is B_n X is A' Y is B'	similar to approximative reasoning	
so, why fuzzy control?		but fact A' is not a fuzzy set bu	but fact A' is not a fuzzy set but a crisp input	
• if there exists no process model		ightarrow actually, it is the current pro	\rightarrow actually, it is the current process value	
(operator/human being has realized control by hand)		fuzzy controller executes infere	fuzzy controller executes inference step	
	nonlinearities \rightarrow no classic methods available	\rightarrow yields fuzzy output set B'(y)	\rightarrow yields fuzzy output set B'(y)	
 if control goals are vaguely formulated ("soft" changing gears in cars) 		but crisp control value required for the process / system		
		\rightarrow defuzzification (= "condense	e" fuzzy set to crisp value)	
technische universität dortmund	G. Rudolph: Computational Intelligence • Winter Term 202	25 technische universität 25 dortmund	G. Rudolph: Computational Intelligence • Winter Term 2022/23 26	
Fuzzy Control	Lecture 04	Fuzzy Control	Lecture 04	
<pre>defuzzification • maximum method</pre>	Def : rule k active $\Leftrightarrow A_k(x_0) > 0$	 defuzzification maximum mean value method 	$Y^* = \{ y \in Y : B'(y) = hgt(B') \}$	
	ctivation level is taken into account		- all active rules with largest activation level are taken into account	
→ suitable for pattern reco		\rightarrow interpolations possib	tions possible, but need not be useful	
\rightarrow decision for a single alter	ernative among finitely many alternatives	ightarrow obviously, only useful for neighboring rules with max. activation		
- selection independent from ac	ctivation level of rule (0.05 vs. 0.95)	- selection independent from activation level of rule (0.05 vs. 0.95)		
- if used for control: discontinuc	ous curve of output values (leaps)	- if used in control: incontinuous curve of output values (leaps)		
$\tilde{y} = a$	$\begin{array}{c} \begin{array}{c} B^{\prime}(y) \\ 0,5 \end{array} \end{array} \end{array} \xrightarrow{\begin{subarray}{c} B^{\prime}(y) \\ 0,5 \end{array} \end{array} \xrightarrow{\begin{subarray}{c} y \\ 0,5 \end{array} } \xrightarrow{\begin{subarray}{c} y \\ \hline \end{array} \end{array} \xrightarrow{\begin{subarray}{c} y \\ \hline \end{array} \xrightarrow{\begin{subarray}{c} y \\ \hline \end{array} \end{array} \xrightarrow{\begin{subarray}{c} y \\ \hline \end{array} \xrightarrow{\begin{subarray}{c} y \\ \hline \end{array} \end{array} \xrightarrow{\begin{subarray}{c} y \\ \hline \end{array} \xrightarrow{\begin{subarray}{c} y \\ \hline \end{array} \end{array} \xrightarrow{\begin{subarray}{c} y \\ \hline \end{array} \xrightarrow{\begin{subarray}{c} y \\ \end{array} \xrightarrow{\begin{subarray}{c} y \\ \hline \end{array} \xrightarrow{\begin{subarray}{c} y \\ \hline \begin{subarray}{c} y \\ \hline \end{array} \xrightarrow{\begin{subarray}{c} y \\ \hline \begin{subarray}{c} y \\ \end{array}$	$\vec{y} = $	$= \frac{1}{ Y^* } \sum_{y^* \in Y^*} y^*$ $B'(y) $ $0,5$ \downarrow $useful solution? \rightarrow \qquad $	
yy_ ↓ technische universität	<u> </u>	//23 technische universität	G. Rudolph: Computational Intelligence • Winter Term 2022	

