technische universität dortmund				Plan for Today	Lecture 05
Computationa Winter Term 2022/23	al Intellige	ence		 Evolutionary Algorithms (EA) Optimization Basics EA Basics 	
Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm En Fakultät für Informatik TU Dortmund	gineering (LS 11)			technische universität G.	Rudolph: Computational Intelligence • Winter Term 2022/23
Orthonization Desire				Outinization Design	
Optimization Basics		Lect	ure 05	Optimization Basics	Lecture 05
modelling	! →	?	! →	given: objective function f: $X \to \mathbb{R}$ feasible region X (= nonempty set)	
simulation	!→	!	?	objective: find solution with <i>minimal</i> or <i>max</i> .	i <i>mal</i> value!
				optimization problem:	x* global solution
optimization	?	!	! →	find $x^* \in X$ such that $f(x^*) = \min\{f(x) : x \in X$	} f(x*) global optimum
		-	F	note:	
	input	system	output	$\max\{ f(x) : x \in X \} = -\min\{ -f(x) : x \in X \}$	
technische universität dortmund		G. Rudolph: Computationa	al Intelligence • Winter Term 2022/23 3	technische universität G. dortmund	Rudolph: Computational Intelligence • Winter Term 2022/23 4

U technische universität dortmund G. Rudolph: Computational Intelligence • Winter Term 2022/23

technische universität dortmund

7

Evolutionary Algorithm Basics	Lecture 05	Evolutionary A	gorithm Basics	Lee	cture 05
Selection methods		Selection metho	ods		
population P = ($x_1, x_2,, x_\mu$) with μ individuals	population P = $(x_1, x_2,, x_\mu)$ with μ individuals				
two approaches: 1. repeatedly select individuals from population with rep 2. rank individuals somehow and choose those with bes • <i>uniform / neutral selection</i> choose index i with probability $1/\mu$ • <i>fitness-proportional selection</i> choose index i with probability $s_i = \frac{f(x_i)}{\sum_{x \in P} f(x)}$ problems: $f(x) > 0$ for all $x \in X$ required $\Rightarrow g(x) =$ but already sensitive to additive shifts $g(x) = f(x) + c$	• rank-proportional selection order individuals according to their fitness values assign ranks fitness-proportional selection based on ranks \Rightarrow avoids all problems of fitness-proportional selection but: best individual has only small selection advantage (can be lost!) • <i>k-ary tournament selection</i> draw k individuals uniformly at random (typically with replacement) from P choose individual with best fitness (break ties at random) \Rightarrow has all advantages of rank-based selection and probability that best individual does not survive: $(1 - \frac{1}{2})^{k\mu} < e^{-k}$				
almost deterministic if large differences, almost uniform	$\mu / \ge 4^{-\mu}$ technische universität G. Rudolph: Computational Intelligence • Winter Term 2022/23				
U dortmund	13	tu dortmund			14
Evolutionary Algorithm Basics	Lecture 05	Evolutionary A	gorithm Basics	Lee	cture 05
Selection methods without replacement		Selection metho	ods: Elitism		
population P = $(x_1, x_2,, x_\mu)$ with μ parents and	<i>Elitist selection</i> : best parent is not replaced by worse individual.				
population Q = ($y_1, y_2,, y_\lambda$) with λ offspring					
 (μ, λ)-selection or truncation selection on offspring rank λ offspring according to their fitness select μ offspring with best ranks ⇒ best individual may get lost, λ ≥ μ required 	or comma-selection	- Intrinsic elitism	method selects fro best survives with if best individual h i.e., replace worst	om parent and offspring, probability 1 has not survived then re-in selected individual by pr	njection into population, eviously best parent
	affensing or plue calenting	method	P{ select best }	from parents & offspring	g intrinsic elitism
 (μ+λ)-selection or truncation selection on parents merge λ offspring and μ parents 	r ouspring or plus-selection	neutral	< 1	no	no
rank them according to their fitness		fitness proportiona	te < 1	no	no
select $\boldsymbol{\mu}$ individuals with best ranks		rank proportionate	< 1	no	no
\Rightarrow best individual survives for sure		k-ary tournament	< 1	no	no
		$(\mu + \lambda)$	= 1	yes	yes
		(μ,λ)	= 1	no	no
Henry I technische universität G. Rudolph: Cor	nputational Intelligence • Winter Term 2022/23	technische unive	rsität	G. Rudolph: Computation	onal Intelligence • Winter Term 2022/23

Evolutionary Algorithm	Basics	Lecture 05	Evolutionary A	Igorithm Basics		Lecture 05
Variation operators: dep	end on representation		Variation in B ⁿ			Individuals $\in \{ 0, 1 \}^n$
			Mutation			
—— mutation	\rightarrow alters a <u>single</u> individ	ual	a) local	→ choose index $k \in \{ 1, . flip bit k, i.e., x_k = 1 - \}$, n } unifor ‹ _k	mly at random,
recombinatio	n \rightarrow creates single offsprin	ng from two or more parents	b) global	\rightarrow for each index $k \in \{$ 1,	, n }: flip b	bit k with probability $p_m \in (0,1)$
may be applied		c) "nonlocal" \rightarrow choose K indices at random and flip bits with these indices				
exclusively (either recombination or mutation) chosen in advance			d) inversion	d) inversion \rightarrow choose start index k _s and end index k _e at random invert order of bits between start and end index		
 sequentially (typically, recombination before mutation); for each offspring sequentially (typically, recombination before mutation) with some probability 			1 0 0 1 1	1 0 k=2 1 0 0 1 1 0 a) 1 b)	$ \begin{array}{c} \rightarrow \\ K=2 \\ \rightarrow \\ c \end{array} $	0 1 0 k _s 1 0 0 0 k _e 0 1 d) 1
technische universität dortmund	G. Rudolph: Cor	nputational Intelligence • Winter Term 2022/23 17	technische unive dortmund	rsität	G. Rudolph: Com	putational Intelligence • Winter Term 2022/23 18
Evolutionary Algorithm	Basics	Lecture 05	Evolutionary A	Igorithm Basics		Lecture 05
Variation in B ⁿ		Individuals $\in \{ 0, 1 \}^n$	Variation in ^{®n}			Individuals $\in \{ 0, 1 \}^n$
Recombination (two pare	nts)		Recombination	(multiparent: ρ = #parents)		
a) 1-point crossover	→ draw cut-point k ∈ {1,,l choose first k bits from 1	n-1} uniformly at random; st parent,	a) diagonal cro	pssover (2 < ρ < n)		
b) K-point crossover	choose last n-k bits from \rightarrow draw K distinct cut-points choose bits 1 to k ₁ from choose bits k ₁ +1 to k ₂ from choose bits k ₂ +1 to k ₃ from	2nd parent uniformly at random; 1st parent, om 2nd parent, om 1st parent, and so forth …	→ choose ρ AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD	A ABBBCCDDDD B BCCCDDAAAA C CDDDAABBBB D DAAABBCCCC	ct chunks fro can othe at ra	om diagonals generate ρ offspring; erwise choose initial chunk andom for single offspring
c) uniform crossover	→ for each index i: choose from 1st or 2nd parent	bit i with equal probability	b) gene pool ci \rightarrow for each (rossover (ρ > 2) gene: choose donating pare	nt uniformlv	at random
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
technische universität dortmund	G. Rudolph: Cor	nputational Intelligence • Winter Term 2022/23 19	technische unive dortmund	rsität	G. Rudolph: Com	nputational Intelligence • Winter Term 2022/23 20

Evolutionary Algorithm Basics	Lecture 05	Evolutionary Algorithm Basics	Lecture 05		
Variation in \mathbb{P}_n • Mutation a) local $\rightarrow 2$ -swap / 1-translocation 53241 $53241\swarrow 54231 52431$	Individuals ∈ X = π(1,, n)	 Variation in P_n Recombination (two parents) a) order-based crossover (OBX) select two indices k₁ and k₂ with k₁ ≤ k₂ uniformly at randd copy genes k₁ to k₂ from 1st parent to offspring (keep pos copy genes from left (pos. 1) to right (pos. n) of 2nd parent insert after pos. k₂ in offspring (skip values already contained) 	Individuals $\in X = \pi(1,, n)$ 2 3 5 7 1 6 4 6 4 5 3 7 2 1 itions) it, ined) 5 3 2 7 1 6 4		
 b) global → draw number K of 2-swaps, apply is K is positive random variable; its distribution may be uniform, bir E[K] and V[K] may control mutation expectation variance 	2-swaps K times omial, geometrical, …; n strength	 b) partially mapped crossover (PMX) [a version of] select two indices k₁ and k₂ with k₁ ≤ k₂ uniformly at random copy genes k₁ to k₂ from 1st parent to offspring (keep positions) copy all genes not already contained in offspring from 2nd parent a 4 5 5 a 4 5 5 			
technische universität G. Rudolph: Com dortmund	putational Intelligence • Winter Term 2022/23 21	technische universität G. Rudolph: Computational Intelligence • Winter Term 2022/23 dortmund 22			
Evolutionary Algorithm Basics	Lecture 05	Evolutionary Algorithm Basics	Lecture 05		

Theorem

Let f: $\mathbb{R}^n \to \mathbb{R}$ be a strictly quasiconvex function. If f(x) = f(y) for some $x \neq y$ then every offspring generated by intermediate recombination is better than its parents.

Proof:

$$f$$
 strictly quasiconvex $\Rightarrow f(\xi \cdot x + (1-\xi) \cdot y) < \max\{f(x), f(y)\}$ for $0 < \xi < 1$

since
$$f(x) = f(y) \implies \max\{f(x),$$

$$\Rightarrow \max\{f(x), f(y)\} = \min\{f(x), f(y)\}$$

$$\Rightarrow f(\xi \cdot x + (1 - \xi) \cdot y) < \min\{f(x), f(y)\} \text{ for } 0 < \xi < 1$$

Theorem Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function and f(x) < f(y) for some $x \neq y$. If $(y - x)^{\prime} \nabla f(x) < 0$ then there is a positive probability that an offspring generated by intermediate recombination is better than both parents. Proof: If $d'\nabla f(x) < 0$ then $d \in \mathbb{R}^n$ is a direction of descent, i.e.

 $\exists \tilde{s} > 0 : \forall s \in (0, \tilde{s}] : f(x + s \cdot d) < f(x).$

Here:
$$d = y - x$$
 such that $\mathsf{P}\{f(\xi \, x + (1 - \xi) \, y) < f(x)\} \ge rac{s}{\|d\|} > 0.$

set $S_{\alpha} = \{x \in \mathbb{R}^n : f(x) < \alpha\}$

technische universität dortmund

